Skip to main content

A python wrapper / client for GLEIF public API.

Project description

LEIPY

A python wrapper / client for GLEIF public API. Suggestions, requests, contributions welcome.

(I started this as a hobby / learning project, so it's rough around the edges. If you are looking for a better solution, check out pygleif)

Dependencies

  1. Python >= 3.4
  2. requests: For API requests
  3. dateutil: For correctly parsing dates as datetime objects
  4. pandas: Optional, for returning output as DataFrame

Usage

Import, instantiate and make the request:

from leipy import GLEIF

gleif = GLEIF(api_version='v1')

raw_output, results, results_df = gleif.request(
    ['HWUPKR0MPOU8FGXBT394','7ZW8QJWVPR4P1J1KQY45'], 
    return_dataframe=True
)

After that, you can access the raw output from the API, results as a class with easy to access instance members, and results as a pandas DataFrame

Raw output example

[{'LEI': {'$': 'HWUPKR0MPOU8FGXBT394'},
  'Entity': {'LegalName': {'$': 'Apple Inc.'},
   'LegalAddress': {'Line1': {'$': 'C/O C T Corporation System'},
    'Line2': {'$': '818 West 7th Street'},
    'Line3': {'$': 'Suite 930'},
    'City': {'$': 'Los Angeles'},
    'Region': {'$': 'US-CA'},
    'Country': {'$': 'US'},
    'PostalCode': {'$': '90017'}},
   'HeadquartersAddress': {'Line1': {'$': '1 Infinite Loop'},
    'City': {'$': 'Cupertino'},
    'Region': {'$': 'US-CA'},
    'Country': {'$': 'US'},
    'PostalCode': {'$': '95014'}},
   'BusinessRegisterEntityID': {'@register': 'RA000598', '$': 'C0806592'},
   'LegalJurisdiction': {'$': 'US'},
   'LegalForm': {'$': 'INCORPORATED'},
   'EntityStatus': {'$': 'ACTIVE'}},
  'Registration': {'InitialRegistrationDate': {'$': '2012-06-06T15:53:00.000Z'},
   'LastUpdateDate': {'$': '2017-12-12T21:19:00.000Z'},
   'RegistrationStatus': {'$': 'ISSUED'},
   'NextRenewalDate': {'$': '2018-12-13T00:31:00.000Z'},
   'ManagingLOU': {'$': 'EVK05KS7XY1DEII3R011'},
   'ValidationSources': {'$': 'FULLY_CORROBORATED'}}},
 {'LEI': {'$': '7ZW8QJWVPR4P1J1KQY45'},
  'Entity': {'LegalName': {'$': 'Google LLC'},
   'LegalAddress': {'Line1': {'$': 'C/O Corporation Service Company'},
    'Line2': {'$': '251 Little Falls Drive'},
    'City': {'$': 'Wilmington'},
    'Region': {'$': 'US-DE'},
    'Country': {'$': 'US'},
    'PostalCode': {'$': '19808'}},
   'HeadquartersAddress': {'Line1': {'$': '1600 Amphitheatre Parkway'},
    'City': {'$': 'Mountain View'},
    'Region': {'$': 'US-CA'},
    'Country': {'$': 'US'},
    'PostalCode': {'$': '94043'}},
   'BusinessRegisterEntityID': {'@register': 'RA000602', '$': '3582691'},
   'LegalJurisdiction': {'$': 'US'},
   'LegalForm': {'$': 'LIMITED LIABILITY COMPANY'},
   'EntityStatus': {'$': 'ACTIVE'}},
  'Registration': {'InitialRegistrationDate': {'$': '2012-06-06T15:52:00.000Z'},
   'LastUpdateDate': {'$': '2018-03-28T17:00:00.000Z'},
   'RegistrationStatus': {'$': 'ISSUED'},
   'NextRenewalDate': {'$': '2018-08-17T18:10:00.000Z'},
   'ManagingLOU': {'$': 'EVK05KS7XY1DEII3R011'},
   'ValidationSources': {'$': 'FULLY_CORROBORATED'}}}]

Results class example

>>> print(results.legal_name)
['Apple Inc.', 'Google LLC']

>>> print(results.lei_reg_status)
['ISSUED', 'ISSUED']

>>> print(results.date_last_updated)
[datetime.datetime(2017, 12, 12, 21, 19, tzinfo=tzutc()),
 datetime.datetime(2018, 3, 28, 17, 0, tzinfo=tzutc())]

Results DataFrame example

>>>results_df
country_hq country_legal date_initial_reg date_last_updated date_next_renewal legal_name lei lei_reg_status status
0 US US 2012-06-06 15:53:00+00:00 2017-12-12 21:19:00+00:00 2018-12-13 00:31:00+00:00 Apple Inc. HWUPKR0MPOU8FGXBT394 ISSUED ACTIVE
1 US US 2012-06-06 15:52:00+00:00 2018-03-28 17:00:00+00:00 2018-08-17 18:10:00+00:00 Google LLC 7ZW8QJWVPR4P1J1KQY45 ISSUED ACTIVE

Project details


Release history Release notifications

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Files for leipy, version 0.1.0
Filename, size & hash File type Python version Upload date
leipy-0.1.0-py3-none-any.whl (5.5 kB) View hashes Wheel py3
leipy-0.1.0.tar.gz (4.8 kB) View hashes Source None

Supported by

Elastic Elastic Search Pingdom Pingdom Monitoring Google Google BigQuery Sentry Sentry Error logging AWS AWS Cloud computing DataDog DataDog Monitoring Fastly Fastly CDN SignalFx SignalFx Supporter DigiCert DigiCert EV certificate StatusPage StatusPage Status page