metrics for evaluating lesion segmentations
Project description
lesion-metrics
Various metrics for evaluating lesion segmentations [1]
Free software: Apache Software License 2.0
Documentation: https://lesion-metrics.readthedocs.io.
Install
The easiest way to install the package is with:
pip install lesion-metrics
To install the dependencies of the CLI, install with:
pip install "lesion-metrics[cli]"
You can also download the source and run:
python setup.py install
Basic Usage
You can generate a report of lesion metrics for a directory of predicted labels and truth labels with the CLI:
lesion-metrics -p predictions/ -t truth/ -o output.csv
Or you can import the metrics and run them on label images:
import nibabel as nib
from lesion_metrics.metrics import dice
pred = nib.load('pred_label.nii.gz').get_fdata()
truth = nib.load('truth_label.nii.gz').get_fdata()
dice_score = dice(pred, truth)
References
[1] Carass, Aaron, et al. “Longitudinal multiple sclerosis lesion segmentation: resource and challenge.” NeuroImage 148 (2017): 77-102.
History
0.1.12 (2022-01-21)
Reduce pymedio dependency in volume calculation
0.1.11 (2022-01-13)
Use pymedio to open files instead of torchio
Refactor for consistency with other projects and code quality
0.1.10 (2021-12-09)
Add lesion count to report
Add helper metric calculator class
0.1.9 (2021-12-07)
Add per lesion metric report CLI for a prediction/truth segmentation pair
0.1.8 (2021-10-28)
Add more summary statistics to report
0.1.7 (2021-10-27)
Add segmentation volume to report and fix minor bugs
0.1.6 (2021-08-16)
Fix minor bug in IoU per lesion computation
0.1.5 (2021-08-16)
Make package compliant with mypy
Add lesion volume calculation
Add support for IoU threshold for LTPR and LFPR
0.1.4 (2021-07-14)
Fix type hints in volume correlation
Correct name of LFPR (lesion false positive rate) to LFDR (lesion false discovery rate)
0.1.3 (2021-06-07)
Fix correlation computation in CLI and other minor typos.
0.1.2 (2021-05-26)
Update code style to black and improve docs.
0.1.1 (2021-05-14)
Fix repo name.
0.1.0 (2021-05-14)
First release on PyPI.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file lesion-metrics-0.1.12.tar.gz
.
File metadata
- Download URL: lesion-metrics-0.1.12.tar.gz
- Upload date:
- Size: 20.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7434fc50d1f8416aebca7deae96388966377982f8711147fc9abbddf99ebd1f3 |
|
MD5 | 4cddf54599961f3baf70e26b1fe9a191 |
|
BLAKE2b-256 | 7b919b830d2f4c9a121e1a07804a37fa344e66361d4dc9199fd8d63544f2e976 |
File details
Details for the file lesion_metrics-0.1.12-py3-none-any.whl
.
File metadata
- Download URL: lesion_metrics-0.1.12-py3-none-any.whl
- Upload date:
- Size: 15.1 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7c27d8cfea31b3c14839a13ac70e78530b739f8017f5467a395d793b1c197c1e |
|
MD5 | dee86b95a731834d81cc295419d6f18b |
|
BLAKE2b-256 | 72ecf31e03c0f6b26e3d3ce86a1a4c33e800a3cec1c48c6ed125419656aba483 |