Skip to main content

metrics for evaluating lesion segmentations

Project description

lesion-metrics

https://img.shields.io/pypi/v/lesion_metrics.svg https://api.travis-ci.com/jcreinhold/lesion-metrics.svg Documentation Status

Various metrics for evaluating lesion segmentations [1]

Install

The easiest way to install the package is with:

pip install lesion-metrics

To install the dependencies of the CLI, install with:

pip install "lesion-metrics[cli]"

You can also download the source and run:

python setup.py install

Basic Usage

You can generate a report of lesion metrics for a directory of predicted labels and truth labels with the CLI:

lesion-metrics -p predictions/ -t truth/ -o output.csv

Or you can import the metrics and run them on label images:

import nibabel as nib
from lesion_metrics.metrics import dice
pred = nib.load('pred_label.nii.gz').get_fdata()
truth = nib.load('truth_label.nii.gz').get_fdata()
dice_score = dice(pred, truth)

References

[1] Carass, Aaron, et al. “Longitudinal multiple sclerosis lesion segmentation: resource and challenge.” NeuroImage 148 (2017): 77-102.

History

0.1.2 (2021-05-26)

  • Update code style to black and improve docs.

0.1.1 (2021-05-14)

  • Fix repo name.

0.1.0 (2021-05-14)

  • First release on PyPI.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

lesion_metrics-0.1.3.tar.gz (14.8 kB view hashes)

Uploaded Source

Built Distribution

lesion_metrics-0.1.3-py2.py3-none-any.whl (7.9 kB view hashes)

Uploaded Python 2 Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page