metrics for evaluating lesion segmentations
Project description
lesion-metrics
Various metrics for evaluating lesion segmentations [1]
Free software: Apache Software License 2.0
Documentation: https://lesion-metrics.readthedocs.io.
Install
The easiest way to install the package is with:
pip install lesion-metrics
To install the dependencies of the CLI, install with:
pip install "lesion-metrics[cli]"
To install the dependencies for total lesion burden/volume computation (see lesion_metrics.volume), install with:
pip install "lesion-metrics[volume]"
You can also download the source and run:
python setup.py install
Basic Usage
You can generate a report of lesion metrics for a directory of predicted labels and truth labels with the CLI:
lesion-metrics -p predictions/ -t truth/ -o output.csv
Or you can import the metrics and run them on label images:
import nibabel as nib
from lesion_metrics.metrics import dice
pred = nib.load('pred_label.nii.gz').get_fdata()
truth = nib.load('truth_label.nii.gz').get_fdata()
dice_score = dice(pred, truth)
References
[1] Carass, Aaron, et al. “Longitudinal multiple sclerosis lesion segmentation: resource and challenge.” NeuroImage 148 (2017): 77-102.
History
0.1.6 (2021-08-16)
Fix minor bug in IoU per lesion computation
0.1.5 (2021-08-16)
Make package compliant with mypy
Add lesion volume calculation
Add support for IoU threshold for LTPR and LFPR
0.1.4 (2021-07-14)
Fix type hints in volume correlation
Correct name of LFPR (lesion false positive rate) to LFDR (lesion false discovery rate)
0.1.3 (2021-06-07)
Fix correlation computation in CLI and other minor typos.
0.1.2 (2021-05-26)
Update code style to black and improve docs.
0.1.1 (2021-05-14)
Fix repo name.
0.1.0 (2021-05-14)
First release on PyPI.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for lesion_metrics-0.1.6-py2.py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7f3a6de189b44a0f7cc0d60550ca3d3a7a0a80c256a559413400b846ccfe65ca |
|
MD5 | 1187026324f6f93eab7c72b439583355 |
|
BLAKE2b-256 | 6828f2745467d4cba6f72fef0c2340ba6f53877daee8f79d602d2f5483c8164d |