Skip to main content

An open source library for statistical plotting

Project description

Lets-Plot official JetBrains project

Couldn't load MIT license svg

Lets-Plot is an open-source plotting library for statistical data.

The design of Lets-Plot library is heavily influenced by Leland Wilkinson work The Grammar of Graphics describing the deep features that underlie all statistical graphics.

This grammar [...] is made up of a set of independent components that can be composed in many different ways. This makes [it] very powerful because you are not limited to a set of pre-specified graphics, but you can create new graphics that are precisely tailored for your problem.

We provide ggplot2-like plotting API for Python and Kotlin users.

Lets-Plot for Python

A bridge between R (ggplot2) and Python data visualization.

Learn more about Lets-Plot for Python installation and usage at the documentation website: https://lets-plot.org.

Lets-Plot for Kotlin

Lets-Plot for Kotlin adds plotting capabilities to scientific notebooks built on the Jupyter Kotlin Kermel.

You can use this API to embed charts into Kotlin/JVM and Kotlin/JS applications as well.

Lets-Plot for Kotlin at GitHub: https://github.com/JetBrains/lets-plot-kotlin.

"Lets-Plot in SciView" plugin

JetBrains Plugins JetBrains plugins

Scientific mode in PyCharm, DataSpell and in IntelliJ IDEA provides support for interactive scientific computing and data visualization.

Lets-Plot in SciView plugin adds support for interactive plotting to IntelliJ-based IDEs with the Scientific mode enabled.

Note: The Scientific mode is NOT available in communinty editions of JetBrains IDEs.

Also read:

What is new in 2.1.0

  • Upgraded dependencies:

    • Kotlin: 1.5.21
    • Apache Batik: 1.14 [#398]
  • Ordering categories:

    New parameters added to the as_discrete function:

    • order_by (string) - the name of the variable by which the ordering will be performed;
    • order (int) - the ordering direction: 1 for ascending direction and -1 for descending (default).

    See: as_discrete.

  • Interactive maps:

    • Pre-configured raster tilesets in new lets_plot.tilesets module.
    • Builtin blank maptiles.

    See: Configuring basemap tiles.

Change Log

See CHANGELOG.md for other changes and fixes.

License

Code and documentation released under the MIT license. Copyright © 2019-2021, JetBrains s.r.o.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

lets_plot-2.2.0rc1-cp39-cp39-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.9Windows x86-64

lets_plot-2.2.0rc1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.5+ x86-64

lets_plot-2.2.0rc1-cp39-cp39-macosx_10_9_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

lets_plot-2.2.0rc1-cp38-cp38-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.8Windows x86-64

lets_plot-2.2.0rc1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.5+ x86-64

lets_plot-2.2.0rc1-cp38-cp38-macosx_10_9_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

lets_plot-2.2.0rc1-cp37-cp37m-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.7mWindows x86-64

lets_plot-2.2.0rc1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.5+ x86-64

lets_plot-2.2.0rc1-cp37-cp37m-macosx_10_9_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.7mmacOS 10.9+ x86-64

lets_plot-2.2.0rc1-cp36-cp36m-win_amd64.whl (2.6 MB view details)

Uploaded CPython 3.6mWindows x86-64

lets_plot-2.2.0rc1-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.6mmanylinux: glibc 2.5+ x86-64

lets_plot-2.2.0rc1-cp36-cp36m-macosx_10_7_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.6mmacOS 10.7+ x86-64

File details

Details for the file lets_plot-2.2.0rc1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: lets_plot-2.2.0rc1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.4.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for lets_plot-2.2.0rc1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 221f8cb1a4081170d33be750cc3171e4609e5c8ca8a98704d1d38dae2592fc88
MD5 c5bc5900e422cc19e8fcc8777c0f3b35
BLAKE2b-256 57c0411ba4871e7064e10d81c5a24d9c1c97b3acb2e71fc95e2acd008eb03b9e

See more details on using hashes here.

File details

Details for the file lets_plot-2.2.0rc1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-2.2.0rc1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 1ea0bd129a66f366c8a935cf442e5e1f3e2b8c2da813d63ef60ff744057ea4d7
MD5 691750d0d1d2b2aa72d6746985433702
BLAKE2b-256 75cb76dfccaa549d1faf32483468ac5a13f9aa6d8179cc9b0b786d3ac06fae1a

See more details on using hashes here.

File details

Details for the file lets_plot-2.2.0rc1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: lets_plot-2.2.0rc1-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2

File hashes

Hashes for lets_plot-2.2.0rc1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 83e712d391767140091d585c63a81c0079e7dbcdc8e5698fb84ed58344eb4952
MD5 c06d07922c7100108a8c349317a2d30b
BLAKE2b-256 4ae6880092d01db9e7c50a206ec3fb2814326e264977d26de189b9a94c9f5886

See more details on using hashes here.

File details

Details for the file lets_plot-2.2.0rc1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: lets_plot-2.2.0rc1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.4.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for lets_plot-2.2.0rc1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 8233fcd55d7aa3647cb9d47f0a7fe55957408bb2d4dbd0df9b101989866d9f4c
MD5 00b6eda968b1b092db7d9423e1c62493
BLAKE2b-256 b24ad175cbcfbd1489f5620bcdced1010a40b4ef9eba1142814c67b32adcaf6b

See more details on using hashes here.

File details

Details for the file lets_plot-2.2.0rc1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-2.2.0rc1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a85157a908fd79fbdc0b73efd6e50f8fef0d0746b219d6cd61418b3360a0c20c
MD5 25dbf1e033ea183b5e19b4d0f841b871
BLAKE2b-256 6d1ce3a89ae1470b44f737fe4551fb5855b468d1adc8bb675add46e8b40623ce

See more details on using hashes here.

File details

Details for the file lets_plot-2.2.0rc1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: lets_plot-2.2.0rc1-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2

File hashes

Hashes for lets_plot-2.2.0rc1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ece99008a5f62bb7be6c1987b161bf09707f6a40518c04b3e3011df8cb90faf9
MD5 58adcb28b5c5a4b80778abc790deac13
BLAKE2b-256 6400e18a6e19c270fe41901b084457ce24b5e334e69f3674117198da68ad1d4b

See more details on using hashes here.

File details

Details for the file lets_plot-2.2.0rc1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: lets_plot-2.2.0rc1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.4.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for lets_plot-2.2.0rc1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 75d4628fb5b7db94e88f1372fec92b0a31874c93aae489e9f9987c973dec3d15
MD5 50ee76da600421a6bc8b22044eb93d4d
BLAKE2b-256 0f16ccfb66b11bbc43a99b7f0ae9036f5461a50b0405c319fcda3132d58122cd

See more details on using hashes here.

File details

Details for the file lets_plot-2.2.0rc1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-2.2.0rc1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a087f3e62b9077c458f1b8cd0f89534b99b1eab534b5209cdb2d5aa07bc6fae3
MD5 b6b00464058758e5a88d76fbab8eac05
BLAKE2b-256 f31c7562a64fedec116336603455d499f92831fceb595770fa479e6233d6091c

See more details on using hashes here.

File details

Details for the file lets_plot-2.2.0rc1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: lets_plot-2.2.0rc1-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2

File hashes

Hashes for lets_plot-2.2.0rc1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ad685176ae8487e97333ecd80be22ed7858dfaf7756e6b774f45c384d1db1708
MD5 dfc1c156542fea72f16921ca4c63528d
BLAKE2b-256 9cfdb2ee299b62809990a8da7f913d66ff4dbd1f308549727efee654c53882ea

See more details on using hashes here.

File details

Details for the file lets_plot-2.2.0rc1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: lets_plot-2.2.0rc1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 2.6 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.4.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.0 CPython/3.9.5

File hashes

Hashes for lets_plot-2.2.0rc1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 5e66b84b2a45e6fbf23b9dc6a3b75e4e095b451be60ccc7f98e127330f18cfbb
MD5 e1eedd9304b8bb7e0616831e6010cc33
BLAKE2b-256 604a6d6054d32739d2edb7b25462a7937fba61744dab77db52de6fa01dc3fe4a

See more details on using hashes here.

File details

Details for the file lets_plot-2.2.0rc1-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-2.2.0rc1-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 7c828f3f09287d3bd8ca389ae7bca1d4117df8978e2dd06330ca78144a11103e
MD5 00a009aba8fcbdd7dc5b9e8f84ce7b7a
BLAKE2b-256 45646566ce673e3a11c0f23b373347e8bfb0f29d9af7b0c60d038b2a44765760

See more details on using hashes here.

File details

Details for the file lets_plot-2.2.0rc1-cp36-cp36m-macosx_10_7_x86_64.whl.

File metadata

  • Download URL: lets_plot-2.2.0rc1-cp36-cp36m-macosx_10_7_x86_64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.6m, macOS 10.7+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2

File hashes

Hashes for lets_plot-2.2.0rc1-cp36-cp36m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 76052a1604431c7be71a28a4cec5a96becf0346a82b18ef8898eae5bb726b098
MD5 c006bb542cfaf83ba4c4e39291668e47
BLAKE2b-256 344eef1e487c369753f65803ce071da32923cc5b97eb562d2990079338e05123

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page