Skip to main content

An open source library for statistical plotting

Project description

Lets-Plot official JetBrains project

Couldn't load MIT license svg

Lets-Plot is an open-source plotting library for statistical data.

The design of Lets-Plot library is heavily influenced by Leland Wilkinson work The Grammar of Graphics describing the deep features that underlie all statistical graphics.

This grammar [...] is made up of a set of independent components that can be composed in many different ways. This makes [it] very powerful because you are not limited to a set of pre-specified graphics, but you can create new graphics that are precisely tailored for your problem.

We provide ggplot2-like plotting API for Python and Kotlin users.

Lets-Plot for Python

A bridge between R (ggplot2) and Python data visualization.

Learn more about Lets-Plot for Python installation and usage at the documentation website: https://lets-plot.org.

Lets-Plot for Kotlin

Lets-Plot for Kotlin adds plotting capabilities to scientific notebooks built on the Jupyter Kotlin Kermel.

You can use this API to embed charts into Kotlin/JVM and Kotlin/JS applications as well.

Lets-Plot for Kotlin at GitHub: https://github.com/JetBrains/lets-plot-kotlin.

"Lets-Plot in SciView" plugin

JetBrains Plugins JetBrains plugins

Scientific mode in PyCharm and in IntelliJ IDEA provides support for interactive scientific computing and data visualization.

Lets-Plot in SciView plugin adds support for interactive plotting to IntelliJ-based IDEs with the Scientific mode enabled.

Note: The Scientific mode is NOT available in communinty editions of JetBrains IDEs.

Also read:

What is new in 2.2.0

  • Added support for coord_flip().

    See: example notebook.

  • Improved plot appearance and better theme support:

    • Bigger fonts across the board;
    • Gridlines;
    • 4 themes from ggplot2 (R) library: theme_grey(), theme_light(), theme_classic(), theme_minimal();
    • Our designer theme: theme_minimal2() (used by default);
    • theme_none() for the case you want to design another theme;
    • A lot more parameters in the theme() function, also helpers: element_line(), element_rect(), element_text().

    See: example notebook.

Note: fonts size, family and face still can not be configured.

  • Improved Date-time formatting support:

    • tooltip format() should understand date-time format pattern [#387];
    • scale_x_datetime should apply date-time formatting to the breaks [#392].

    See: example notebook.

  • corr_plot() function now also accepts pre-computed correlation coefficients. I.e. the following two expressions are equivalent:

    corr_plot(iris_df).points().labels().build()
    corr_plot(iris_df.corr()).points().labels().build()  # new

Change Log

See CHANGELOG.md for other changes and fixes.

License

Code and documentation released under the MIT license. Copyright © 2019-2021, JetBrains s.r.o.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

lets_plot-2.3.0rc1-cp39-cp39-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.9Windows x86-64

lets_plot-2.3.0rc1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.5+ x86-64

lets_plot-2.3.0rc1-cp39-cp39-macosx_10_9_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

lets_plot-2.3.0rc1-cp38-cp38-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.8Windows x86-64

lets_plot-2.3.0rc1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.5+ x86-64

lets_plot-2.3.0rc1-cp38-cp38-macosx_10_9_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

lets_plot-2.3.0rc1-cp37-cp37m-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.7mWindows x86-64

lets_plot-2.3.0rc1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.5+ x86-64

lets_plot-2.3.0rc1-cp37-cp37m-macosx_10_9_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.7mmacOS 10.9+ x86-64

lets_plot-2.3.0rc1-cp36-cp36m-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.6mWindows x86-64

lets_plot-2.3.0rc1-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.6mmanylinux: glibc 2.5+ x86-64

lets_plot-2.3.0rc1-cp36-cp36m-macosx_10_7_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.6mmacOS 10.7+ x86-64

File details

Details for the file lets_plot-2.3.0rc1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: lets_plot-2.3.0rc1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for lets_plot-2.3.0rc1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 4381c88f64762ceaeb35d64dfed041cab6185503a9967e34603c345e6e104479
MD5 f79026c5721759cf4b74ecde22f7dfcc
BLAKE2b-256 8c8a78de89d5b3514616a386366810d99ec743182e08070a6348fb9d72b3950f

See more details on using hashes here.

File details

Details for the file lets_plot-2.3.0rc1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-2.3.0rc1-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 5181254b5e95dcbdcac285667ceeb3bde36e66f64afc783fc168325666358e9b
MD5 1cc86452371000c19fb3be8eb2893c08
BLAKE2b-256 3a45d2861275324f153f20886de02c96e30955c1fae2258bd973959db5edaa34

See more details on using hashes here.

File details

Details for the file lets_plot-2.3.0rc1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: lets_plot-2.3.0rc1-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2

File hashes

Hashes for lets_plot-2.3.0rc1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f425640b6ed9ddf004e5522e3875acb02167e6d423c6320d205503de14fc1f85
MD5 25d8379d3c124968b6f9f9277fb4b0b9
BLAKE2b-256 422a9a4ee7e041bd6a99e1d4e944675ed508a22f488f94d4f42a2cc198131618

See more details on using hashes here.

File details

Details for the file lets_plot-2.3.0rc1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: lets_plot-2.3.0rc1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for lets_plot-2.3.0rc1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 0c089886def89a680e9af084b2767f5f30f42bf6f1cd60ca29ba08a624ffdbdc
MD5 349abdb2a8f2a6c9061429e6d0c05ce7
BLAKE2b-256 da3745274f6e47081d7f524edd4a514d93c722b7fca3598d79ca9c591a4d6a02

See more details on using hashes here.

File details

Details for the file lets_plot-2.3.0rc1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-2.3.0rc1-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 c5add1e811d70a8832967fe07dbc3ca4d87362ce16546b8e8b452ff892d18353
MD5 fcb7594d295c1302dd8d641e15753294
BLAKE2b-256 ae188adcabaa98d10314b547265c2817e52542838c7a6fe600603372506b036f

See more details on using hashes here.

File details

Details for the file lets_plot-2.3.0rc1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: lets_plot-2.3.0rc1-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2

File hashes

Hashes for lets_plot-2.3.0rc1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5014030eba39dc6b0955f00a381e9127bb73ee35d5b0962717df749079d0f285
MD5 bcc4d8821f304780ed5240f7b6033f5e
BLAKE2b-256 fdd6153d4af781256cc99d19fb92ba2d176ff694ebbe16324811cbd0e0371cfa

See more details on using hashes here.

File details

Details for the file lets_plot-2.3.0rc1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: lets_plot-2.3.0rc1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for lets_plot-2.3.0rc1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 d0de494216de37eb860728bd3b9ccdfe699201c091711924ea3e1d88acbc5cea
MD5 f8882d1f9c89579db6027dacf2b68876
BLAKE2b-256 2fc7eae574c97eb10dc2e01fabe1c874f716d630c1d2db1ade06bf9caca9bb8f

See more details on using hashes here.

File details

Details for the file lets_plot-2.3.0rc1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-2.3.0rc1-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 f57045b10de9b74538f2d361b671e12857621a219352b5c081795e522d847c9b
MD5 b4b493b3d2bf7a2868d123d1169915e8
BLAKE2b-256 eb45db3015dd25fea9e53928ef313e5a26f097c8bada24a68813e06dce61473a

See more details on using hashes here.

File details

Details for the file lets_plot-2.3.0rc1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: lets_plot-2.3.0rc1-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2

File hashes

Hashes for lets_plot-2.3.0rc1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 42bcf2d913e2bcc5f9c3f8a6d81122d3f0e6096e5dd7c23a5a00b51506870d00
MD5 e349c4b50bf340e9afbad3ea3e5bb5ba
BLAKE2b-256 0263f7d63f0f111b06b4d93db75366563fcd2d1da79ac0e9700c539f211f4b2c

See more details on using hashes here.

File details

Details for the file lets_plot-2.3.0rc1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: lets_plot-2.3.0rc1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for lets_plot-2.3.0rc1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 82745c487a3f1417df802fc5aa707a649885bc3e1a0508b79c775018fdb585be
MD5 60993b62c8bd8abeff5040470a029097
BLAKE2b-256 d1d7c94ffbf1b49778252714eb714ec08b15bc99d8adbb8bb845a8ef60af16b0

See more details on using hashes here.

File details

Details for the file lets_plot-2.3.0rc1-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-2.3.0rc1-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 4e91f40eb93196a7bf7e7a1e120c4fc99595b3897373f3360150f80cfb0648ec
MD5 4ce1cf35d6d0c7cefe97d77b03ad57d2
BLAKE2b-256 78b405b00e9c0475609d306731e8926cbfecda3dae329dd0b59079df4695dffd

See more details on using hashes here.

File details

Details for the file lets_plot-2.3.0rc1-cp36-cp36m-macosx_10_7_x86_64.whl.

File metadata

  • Download URL: lets_plot-2.3.0rc1-cp36-cp36m-macosx_10_7_x86_64.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: CPython 3.6m, macOS 10.7+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2

File hashes

Hashes for lets_plot-2.3.0rc1-cp36-cp36m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 934b70404c46bc81f7f96ff3107c5176a06e47ef19fe437a56bed1788cd44f29
MD5 ccfdbc2ad9d14194c352c8f3e9363e10
BLAKE2b-256 5efc2d0ee6a6f028384b163a0e110d5e0c627e9609427d37ccf5f8839fa91a72

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page