Skip to main content

An open source library for statistical plotting

Project description

Lets-Plot official JetBrains project

Couldn't load MIT license svg

Lets-Plot is an open-source plotting library for statistical data.

The design of Lets-Plot library is heavily influenced by Leland Wilkinson work The Grammar of Graphics describing the deep features that underlie all statistical graphics.

This grammar [...] is made up of a set of independent components that can be composed in many different ways. This makes [it] very powerful because you are not limited to a set of pre-specified graphics, but you can create new graphics that are precisely tailored for your problem.

We provide ggplot2-like plotting API for Python and Kotlin users.

Lets-Plot for Python

A bridge between R (ggplot2) and Python data visualization.

Learn more about Lets-Plot for Python installation and usage at the documentation website: https://lets-plot.org.

Lets-Plot for Kotlin

Lets-Plot for Kotlin adds plotting capabilities to scientific notebooks built on the Jupyter Kotlin Kermel.

You can use this API to embed charts into Kotlin/JVM and Kotlin/JS applications as well.

Lets-Plot for Kotlin at GitHub: https://github.com/JetBrains/lets-plot-kotlin.

"Lets-Plot in SciView" plugin

JetBrains Plugins JetBrains plugins

Scientific mode in PyCharm and in IntelliJ IDEA provides support for interactive scientific computing and data visualization.

Lets-Plot in SciView plugin adds support for interactive plotting to IntelliJ-based IDEs with the Scientific mode enabled.

Note: The Scientific mode is NOT available in communinty editions of JetBrains IDEs.

Also read:

What is new in 2.2.0

  • Added support for coord_flip().

    See: example notebook.

  • Improved plot appearance and better theme support:

    • Bigger fonts across the board;
    • Gridlines;
    • 4 themes from ggplot2 (R) library: theme_grey(), theme_light(), theme_classic(), theme_minimal();
    • Our designer theme: theme_minimal2() (used by default);
    • theme_none() for the case you want to design another theme;
    • A lot more parameters in the theme() function, also helpers: element_line(), element_rect(), element_text().

    See: example notebook.

Note: fonts size, family and face still can not be configured.

  • Improved Date-time formatting support:

    • tooltip format() should understand date-time format pattern [#387];
    • scale_x_datetime should apply date-time formatting to the breaks [#392].

    See: example notebook.

  • corr_plot() function now also accepts pre-computed correlation coefficients. I.e. the following two expressions are equivalent:

    corr_plot(iris_df).points().labels().build()
    corr_plot(iris_df.corr()).points().labels().build()  # new

Change Log

See CHANGELOG.md for other changes and fixes.

License

Code and documentation released under the MIT license. Copyright © 2019-2022, JetBrains s.r.o.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

lets_plot-2.3.0rc2-cp39-cp39-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.9Windows x86-64

lets_plot-2.3.0rc2-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.5+ x86-64

lets_plot-2.3.0rc2-cp39-cp39-macosx_10_9_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

lets_plot-2.3.0rc2-cp38-cp38-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.8Windows x86-64

lets_plot-2.3.0rc2-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.5+ x86-64

lets_plot-2.3.0rc2-cp38-cp38-macosx_10_9_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

lets_plot-2.3.0rc2-cp37-cp37m-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.7mWindows x86-64

lets_plot-2.3.0rc2-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.5+ x86-64

lets_plot-2.3.0rc2-cp37-cp37m-macosx_10_9_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.7mmacOS 10.9+ x86-64

lets_plot-2.3.0rc2-cp36-cp36m-win_amd64.whl (2.7 MB view details)

Uploaded CPython 3.6mWindows x86-64

lets_plot-2.3.0rc2-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.6mmanylinux: glibc 2.5+ x86-64

lets_plot-2.3.0rc2-cp36-cp36m-macosx_10_7_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.6mmacOS 10.7+ x86-64

File details

Details for the file lets_plot-2.3.0rc2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: lets_plot-2.3.0rc2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for lets_plot-2.3.0rc2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c956e79c9655b9644fa8f84aa9213bd8a77e79ca02808c7247f0244fce42fc4c
MD5 13ccac6354d698c7f7dfcb9908a2d4a9
BLAKE2b-256 4a80641e502c25db18f005cdc0c8305bff662d24e011d5bda4a2eb0d57b414e9

See more details on using hashes here.

File details

Details for the file lets_plot-2.3.0rc2-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-2.3.0rc2-cp39-cp39-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 03c08e59b64c988b9a33b11911993ef6ca3dcfc43d75b3e610f461c3c760befc
MD5 eb689786663f92b56c8ffc41db7d75df
BLAKE2b-256 63111a0d54c9e1b18fec63c3c59e765b9d94441c2b2e289ffbb63d2b58ff1bc1

See more details on using hashes here.

File details

Details for the file lets_plot-2.3.0rc2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: lets_plot-2.3.0rc2-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2

File hashes

Hashes for lets_plot-2.3.0rc2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 cf0d7305f2dc265a0d9c037355e2434860833ef425674a02b42944577213fb62
MD5 665b82e74df5e8c8b72cc099d1db569d
BLAKE2b-256 db7c52647a0513cbc431ccaadc485e79552fe3498d91cd5db561f1ea42a94e60

See more details on using hashes here.

File details

Details for the file lets_plot-2.3.0rc2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: lets_plot-2.3.0rc2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for lets_plot-2.3.0rc2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 d484750fed9fbd93a1e2d39bd4d7d81f728bbd5462047ba81bad8296ae8f4866
MD5 aa1c454f23e19a28e75b2ef6e5bb48f9
BLAKE2b-256 b7c2301ecc79d6152f7b3f96e8b82a317591584fc9ebd224c885f7eee5d5f647

See more details on using hashes here.

File details

Details for the file lets_plot-2.3.0rc2-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-2.3.0rc2-cp38-cp38-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 835286c46d76084046426a4aeab02d1f187d90c1a584121c94f4ad5c6476ce3c
MD5 a6a0fde9847ca7379f88380655c19825
BLAKE2b-256 4685e0ea56a5fbf7b5d50806fdd100f09099e8dab070c8e62396aa909da98735

See more details on using hashes here.

File details

Details for the file lets_plot-2.3.0rc2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: lets_plot-2.3.0rc2-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2

File hashes

Hashes for lets_plot-2.3.0rc2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 da37b2b233104e259b9935cc46d5ac94557e8b36c8f84d6460bb367deb108588
MD5 4ae688e199b3314540087ac991a652c6
BLAKE2b-256 be7074a1d5b7a13ec16ad33bef2103251c5fd72c9d979972019bae04f4a0a0df

See more details on using hashes here.

File details

Details for the file lets_plot-2.3.0rc2-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: lets_plot-2.3.0rc2-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for lets_plot-2.3.0rc2-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 1cd91f6df5ef38e33dbc61d2f872100df3406e3f7c5d072886acbe834c37c2d6
MD5 779508a8a38293a8d004689f1f160d8e
BLAKE2b-256 bf8aa16a36e3a1174adaa61baad2f0ee2af488f6845ea64666fa80d4f68c7536

See more details on using hashes here.

File details

Details for the file lets_plot-2.3.0rc2-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-2.3.0rc2-cp37-cp37m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 034abffa15871c522d987a2e684662c920531e2488a97da102971dcc157796c8
MD5 8f26333b43a851ee517831bab0a90315
BLAKE2b-256 d2a39df53c875f8c1ef0ed9f73db80e83ff0ae1c681819b0deec7f3c19e95103

See more details on using hashes here.

File details

Details for the file lets_plot-2.3.0rc2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: lets_plot-2.3.0rc2-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2

File hashes

Hashes for lets_plot-2.3.0rc2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9c82402716a209dcf0d55eac6c8032839aeb90b27a6e6cbe612a60d7468f103a
MD5 3883c223c4670aa11bd6c012bc3c0c28
BLAKE2b-256 6b2d9fc79e98775288583bdf5452279688abaa35c0037fe992ea68f1372773f8

See more details on using hashes here.

File details

Details for the file lets_plot-2.3.0rc2-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: lets_plot-2.3.0rc2-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 2.7 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for lets_plot-2.3.0rc2-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 210d08d2c7067340b6eef04697603d3a39525139ed41654e477b727cd23a16b1
MD5 dbeecdf1e480b7c1fccab803ca3459ed
BLAKE2b-256 3470aa6abc13f49acf238987ef08fd190f4afe179e8a7734a6b187c01d20d89c

See more details on using hashes here.

File details

Details for the file lets_plot-2.3.0rc2-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-2.3.0rc2-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 345ce4d82b2cc3e90c5b02b650ca63f0ef613ec6c0138d92af5f7f4aa15d4a79
MD5 399453e0c66a39401ff08456ca9d2bb3
BLAKE2b-256 2aec1c90d26423471b1410d046df4963b4c2530e3e647f5249791dc4aa9b4069

See more details on using hashes here.

File details

Details for the file lets_plot-2.3.0rc2-cp36-cp36m-macosx_10_7_x86_64.whl.

File metadata

  • Download URL: lets_plot-2.3.0rc2-cp36-cp36m-macosx_10_7_x86_64.whl
  • Upload date:
  • Size: 3.3 MB
  • Tags: CPython 3.6m, macOS 10.7+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2

File hashes

Hashes for lets_plot-2.3.0rc2-cp36-cp36m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 f60387a9a77ce2484200242f875058bfceb00c29228012b7eba88cc4a240e787
MD5 6476f84b367593df5e7f939a0a470920
BLAKE2b-256 fea1e0cb3c617b98963abd8b202c7a6bea9a4fcf43e89a7f38d52b3e71dc23f2

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page