Skip to main content

An open source library for statistical plotting

Project description

Lets-Plot official JetBrains project

Couldn't load MIT license svg

Lets-Plot is an open-source plotting library for statistical data.

The design of Lets-Plot library is heavily influenced by Leland Wilkinson work The Grammar of Graphics describing the deep features that underlie all statistical graphics.

This grammar [...] is made up of a set of independent components that can be composed in many different ways. This makes [it] very powerful because you are not limited to a set of pre-specified graphics, but you can create new graphics that are precisely tailored for your problem.

We provide ggplot2-like plotting API for Python and Kotlin users.

Lets-Plot for Python

A bridge between R (ggplot2) and Python data visualization.

Learn more about Lets-Plot for Python installation and usage at the documentation website: https://lets-plot.org.

Lets-Plot for Kotlin

Lets-Plot for Kotlin adds plotting capabilities to scientific notebooks built on the Jupyter Kotlin Kermel.

You can use this API to embed charts into Kotlin/JVM and Kotlin/JS applications as well.

Lets-Plot for Kotlin at GitHub: https://github.com/JetBrains/lets-plot-kotlin.

"Lets-Plot in SciView" plugin

JetBrains Plugins JetBrains plugins

Scientific mode in PyCharm and in IntelliJ IDEA provides support for interactive scientific computing and data visualization.

Lets-Plot in SciView plugin adds support for interactive plotting to IntelliJ-based IDEs with the Scientific mode enabled.

Note: The Scientific mode is NOT available in communinty editions of JetBrains IDEs.

Also read:

What is new in 2.4.0

  • Python versions

    Added Python 3.10 wheels as well as new Apple Silicon wheel for Python 3.9.

  • New Plot Types

    • Quantile-Quantile (Q-Q) plot.

      • geometries:
        • geom_qq()
        • geom_qq_line()
        • geom_qq2()
        • geom_qq2_line()
      • quick Q-Q : the qq_plot() function in the bistro module.

      See: example notebook.

    • Marginal plots.

      f-22b/images/marginal_layers.png

      See: example notebook.

  • Plot Theme

  • Color Scales

    scale_color_gradientn() and scale_fill_gradientn() functions.

    See: example notebook.

Change Log

See CHANGELOG.md for other changes and fixes.

License

Code and documentation released under the MIT license. Copyright © 2019-2022, JetBrains s.r.o.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

lets_plot-2.4.0-cp310-cp310-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.10Windows x86-64

lets_plot-2.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

lets_plot-2.4.0-cp310-cp310-macosx_12_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.10macOS 12.0+ ARM64

lets_plot-2.4.0-cp310-cp310-macosx_10_9_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

lets_plot-2.4.0-cp39-cp39-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.9Windows x86-64

lets_plot-2.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

lets_plot-2.4.0-cp39-cp39-macosx_11_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

lets_plot-2.4.0-cp39-cp39-macosx_10_9_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

lets_plot-2.4.0-cp38-cp38-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.8Windows x86-64

lets_plot-2.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

lets_plot-2.4.0-cp38-cp38-macosx_10_9_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

lets_plot-2.4.0-cp37-cp37m-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.7mWindows x86-64

lets_plot-2.4.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.7mmanylinux: glibc 2.17+ x86-64

lets_plot-2.4.0-cp37-cp37m-macosx_10_9_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.7mmacOS 10.9+ x86-64

lets_plot-2.4.0-cp36-cp36m-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.6mWindows x86-64

lets_plot-2.4.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (2.8 MB view details)

Uploaded CPython 3.6mmanylinux: glibc 2.17+ x86-64

lets_plot-2.4.0-cp36-cp36m-macosx_10_7_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.6mmacOS 10.7+ x86-64

File details

Details for the file lets_plot-2.4.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: lets_plot-2.4.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for lets_plot-2.4.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 22f95d87bac02cc88606f0711ccc6c94c2aa54432cbf7d62b79a4afbe9e56be6
MD5 4216eb35ec0255e9691e36e3da6c0d25
BLAKE2b-256 5b5abb149d60e724b5a393141295edaff76a0055c9572682941d444c04fd90ca

See more details on using hashes here.

File details

Details for the file lets_plot-2.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-2.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ce3ca060ca6b523298ded70a997495c81f8178406bcb6ff51ea6ad111e0c1e3a
MD5 70b17b5da0bd60b4886cc22cc6c406f1
BLAKE2b-256 86dab8374e9d2002cb9c6cb6412666cd76305c26e74e2769d85aec51388b17d4

See more details on using hashes here.

File details

Details for the file lets_plot-2.4.0-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

  • Download URL: lets_plot-2.4.0-cp310-cp310-macosx_12_0_arm64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.10, macOS 12.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2

File hashes

Hashes for lets_plot-2.4.0-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 7befeb5302ad9d65686a4787b7ec41c849cbdca06095fb849cf11aab185ffbfe
MD5 dba1d565ae21b97fcbce7f19ecba5b56
BLAKE2b-256 01bd7002d4de4c95fcb5238459d140a81ade21b139bd32c845993e6377c83099

See more details on using hashes here.

File details

Details for the file lets_plot-2.4.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: lets_plot-2.4.0-cp310-cp310-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.10, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2

File hashes

Hashes for lets_plot-2.4.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5d17a4f920de8226c0f138acadf14b04cda6682ce653f13bb4c2f941e12f918f
MD5 fe2e9b6bca7612c2b5a424ce838a627e
BLAKE2b-256 3ab1af223a21501f3d441f39731ae044cdfbf9b8779226262175bdbf3c319203

See more details on using hashes here.

File details

Details for the file lets_plot-2.4.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: lets_plot-2.4.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for lets_plot-2.4.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 2d146996b61f8f9a11dfa2ce4399aeed60f6f3a1adda56a0afdff630618c1d05
MD5 3b3f5aac716060cd55bf8793c5d71ea8
BLAKE2b-256 752147874e0b7d1c0217308e90ea181b394d8fcfdc800207f505bf0def3d438d

See more details on using hashes here.

File details

Details for the file lets_plot-2.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-2.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 89bbb89013511cc28989608217c96ba22d64119d8184777a30a7f2852eb7796f
MD5 3f063fae7f78920e3e23221659139476
BLAKE2b-256 d3ab2943ddc6f526e1ccbdce2dcbab289e5c6f6cabb3055696d17f24fe5cda53

See more details on using hashes here.

File details

Details for the file lets_plot-2.4.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

  • Download URL: lets_plot-2.4.0-cp39-cp39-macosx_11_0_arm64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.9, macOS 11.0+ ARM64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2

File hashes

Hashes for lets_plot-2.4.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 58598d53fc6d902ea5645178c902ae0fe8d69efccdb129e0122bdee922c7b805
MD5 c0e4e1d2bf47af5d2de15159a951f3a4
BLAKE2b-256 869f28db350c570b369db840c3189cccf691919a6acb1aa38611f743222c1717

See more details on using hashes here.

File details

Details for the file lets_plot-2.4.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: lets_plot-2.4.0-cp39-cp39-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.9, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2

File hashes

Hashes for lets_plot-2.4.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 412bfef147f4cd4bfbc78d1ec1db8cdfc812c803f9985b96ba8a1c5cf094c21e
MD5 10ed26cb159d22aec61824aacceba3b2
BLAKE2b-256 3ca8d186959aa57dde090c25dd27788aae0d7bd4968d1521d70009df262b8e27

See more details on using hashes here.

File details

Details for the file lets_plot-2.4.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: lets_plot-2.4.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for lets_plot-2.4.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 01e539730e3df08b21c37a7c80c1d3c9fa6d520d11584dd5d59bb78c842d4a85
MD5 0f6cf6160094d7887d801317987ce772
BLAKE2b-256 75dffe12f7e288de6e82311bd7aaacc8e0293cc5f5e9abbd48f5fed5a1752ca8

See more details on using hashes here.

File details

Details for the file lets_plot-2.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-2.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c27931df140fbbd9ba957b4d4cb8e6434821cb10b73abd8391d135f99d8068aa
MD5 898533f9a75be61042bd88a1c8866bf6
BLAKE2b-256 63017032b30c14d72f0dc57d713dcdf1ec03547f65f50fd9310fdd12bcd59d9b

See more details on using hashes here.

File details

Details for the file lets_plot-2.4.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: lets_plot-2.4.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2

File hashes

Hashes for lets_plot-2.4.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 227102f101f010b481806c96d1b6b533bd44b476a2006a577e62a3747c39d538
MD5 90894e2d071b6a18c44e4b9056286875
BLAKE2b-256 e26e13bd94fc2dbbb6c9c39c55bba32b07d82853926eaa4608da317a4c0fd092

See more details on using hashes here.

File details

Details for the file lets_plot-2.4.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: lets_plot-2.4.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for lets_plot-2.4.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 36e7e6ba76d4f759276ee46b93d248ababff2d88ade29f113b1e089a13bf8348
MD5 3fb9f94fdde04f5247e63f1b5c3889f5
BLAKE2b-256 cbd27df6de1cf39420d2b6b6487c484188513223f4c926962d978eaa7b4fd0bf

See more details on using hashes here.

File details

Details for the file lets_plot-2.4.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-2.4.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 df4d47845ba68559c04ef2043f2a12a0333783b43fee097928eee9e437804ae7
MD5 b790a413ad838b4f9ea1c06985ed9965
BLAKE2b-256 f30aef7cf52b867b64837ce1bd55343c717d1f7b21f74f125ce7abddf21c5f1e

See more details on using hashes here.

File details

Details for the file lets_plot-2.4.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: lets_plot-2.4.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2

File hashes

Hashes for lets_plot-2.4.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d2952520324b5a3871a58e24c5aba3043822864334121b2b44ea0263b174a21a
MD5 ffe2faf824220d845a3c4585db02f62d
BLAKE2b-256 8d72cd70d29eecfdd4a56da85f7d2e7186837ab241a3a219e3b5db758d193002

See more details on using hashes here.

File details

Details for the file lets_plot-2.4.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: lets_plot-2.4.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.0 importlib_metadata/4.8.2 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7

File hashes

Hashes for lets_plot-2.4.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 59be3a128dd61af46d5e319c9d453a46901bf215941fc34378ffd95fa7b6dc83
MD5 f3e70c3dfc590f81a133cd570c7cdfbf
BLAKE2b-256 39ee4ca21920ff71344377384b6a2f4533e1a03c176851c9479004eccf52296b

See more details on using hashes here.

File details

Details for the file lets_plot-2.4.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-2.4.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 38bf16c6a65b31f2cb4cf4f2e5432457c4f1327c36a0d3e5dcf14ee38860fdc1
MD5 109fceb3f83eba24e9fcc00e36c1966a
BLAKE2b-256 4df5b5d6a0a593098c909da1498f7e8f767baf75df7f6517ca2588a84bbb64c4

See more details on using hashes here.

File details

Details for the file lets_plot-2.4.0-cp36-cp36m-macosx_10_7_x86_64.whl.

File metadata

  • Download URL: lets_plot-2.4.0-cp36-cp36m-macosx_10_7_x86_64.whl
  • Upload date:
  • Size: 3.2 MB
  • Tags: CPython 3.6m, macOS 10.7+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3.post20200330 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.8.2

File hashes

Hashes for lets_plot-2.4.0-cp36-cp36m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 14da67000cdc364532742e817cf9b8f974f9b5a5595d7b69d61b9e4c71f23684
MD5 9d914e10f24d68acea8298aedb83b3a7
BLAKE2b-256 3f58fedca4ce236f9b5fdd952d9b56940894bb83a4b02a7a02f35ce669689a76

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page