Skip to main content

An open source library for statistical plotting

Project description

Lets-Plot

official JetBrains project License MIT Latest Release

Lets-Plot is a multiplatform plotting library built on the principles of the Grammar of Graphics.

The library' design is heavily influenced by Leland Wilkinson work The Grammar of Graphics describing the deep features that underlie all statistical graphics.

This grammar [...] is made up of a set of independent components that can be composed in many different ways. This makes [it] very powerful because you are not limited to a set of pre-specified graphics, but you can create new graphics that are precisely tailored for your problem.

Grammar of Graphics for Python Latest Release

A bridge between R (ggplot2) and Python data visualization.
To learn more see the documentation site at lets-plot.org.

Grammar of Graphics for Kotlin Latest Release

Notebooks

Create plots in Kotlin Notebook, Datalore, Jupyter with Kotlin Kernel
or any other notebook that supports Kotlin Kernel.
To learn more see the Lets-Plot Kotlin API project at GitHub.

Compose Multiplatform

Embed Lets-Plot charts in Compose Multiplatform applications.
To learn more see the Lets-Plot Skia Frontend project at GitHub.

JVM and Kotlin/JS

Embed Lets-Plot charts in JVM (Swing, JavaFX) and Kotlin/JS applications.
To learn more see the Lets-Plot Kotlin API project at GitHub.

"Lets-Plot in SciView" plugin

JetBrains Plugins JetBrains plugins

Scientific mode in PyCharm and in IntelliJ IDEA provides support for interactive scientific computing and data visualization.

Lets-Plot in SciView plugin adds support for interactive plotting to IntelliJ-based IDEs with the Scientific mode enabled.

Note: The Scientific mode is NOT available in communinty editions of JetBrains IDEs.

Also read:

What is new in 4.3.0

  • coord_polar()

    The polar coordinate system is most commonly used for pie charts, but
    it can also be used for constructing Spider or Radar charts using the flat option.


    f-24a/images/polar_coord_pie.png f-24a/images/radar_chart.png

    See: example notebook.

  • In the theme():

    • panel_inset parameter - primarily used for plots with polar coordinates.

      See: example notebook.

    • panel_border_ontop parameter - enables the drawing of panel border on top of the plot geoms.

    • panel_grid_ontop, panel_grid_ontop_x, panel_grid_ontop_y parameters - enable the drawing of grid lines on top of the plot geoms.

  • geom_curve()


    f-24a/images/curve_annotation.png

    See: example notebook.

  • [UNIQUE] Visualizing Graph-like Data with geom_segment() and geom_curve()

    • Aesthetics size_start, size_end, stroke_start and stroke_end enable better alignment of
      segments/curves with nodes of the graph by considering the size of the nodes.

    • The spacer parameter allows for additional manual fine-tuning.


      f-24a/images/graph_simple.png f-24a/images/graph_on_map.png

    See:

  • The alpha_stroke Parameter in geom_label()

    Use the alpha_stroke parameter to apply alpha to entire label. By default, alpha is only applied to the label background.

    See: example notebook.

  • Showing Plots in External Browser

    The setup_show_ext() directive allows plots to be displayed in an external browser window.

Recent Updates in the Gallery

f-24b/images/gal_venn_diagram.png f-24b/images/gal_spoke.png f-24b/images/gal_indonesia_volcanoes_on_map.png f-24b/images/gal_japanese_volcanoes_on_map.png f-24a/images/gal_bbc_cookbook.png f-24a/images/gal_penguins.png f-24a/images/gal_periodic_table.png f-24a/images/gal_wind_rose.png f-24a/images/gal_polar_heatmap.png

Change Log

See CHANGELOG.md for other changes and fixes.

Code of Conduct

This project and the corresponding community are governed by the JetBrains Open Source and Community Code of Conduct. Please make sure you read it.

License

Code and documentation released under the MIT license. Copyright © 2019-2024, JetBrains s.r.o.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

lets_plot-4.3.3-cp312-cp312-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.12 Windows x86-64

lets_plot-4.3.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

lets_plot-4.3.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.0 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

lets_plot-4.3.3-cp312-cp312-macosx_11_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

lets_plot-4.3.3-cp312-cp312-macosx_10_9_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

lets_plot-4.3.3-cp311-cp311-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.11 Windows x86-64

lets_plot-4.3.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

lets_plot-4.3.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.0 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

lets_plot-4.3.3-cp311-cp311-macosx_11_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

lets_plot-4.3.3-cp311-cp311-macosx_10_9_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

lets_plot-4.3.3-cp310-cp310-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.10 Windows x86-64

lets_plot-4.3.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

lets_plot-4.3.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

lets_plot-4.3.3-cp310-cp310-macosx_11_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

lets_plot-4.3.3-cp310-cp310-macosx_10_9_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

lets_plot-4.3.3-cp39-cp39-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.9 Windows x86-64

lets_plot-4.3.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

lets_plot-4.3.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

lets_plot-4.3.3-cp39-cp39-macosx_11_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

lets_plot-4.3.3-cp39-cp39-macosx_10_9_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

lets_plot-4.3.3-cp38-cp38-win_amd64.whl (2.5 MB view details)

Uploaded CPython 3.8 Windows x86-64

lets_plot-4.3.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

lets_plot-4.3.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

lets_plot-4.3.3-cp38-cp38-macosx_11_0_arm64.whl (3.1 MB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

lets_plot-4.3.3-cp38-cp38-macosx_10_9_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file lets_plot-4.3.3-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.3-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 a28d778338c3d78f04b38b254e0d918a9b97f018ca468808bd1d937239e6cbe4
MD5 869d3c417af49d12f72c860fbdbd1a23
BLAKE2b-256 dbad03be9268c2665403aac16384c90b428e46bdf149e8f4302515310b2727c9

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 04750533c98aa6681ef7d936e8a6967949d5e40240b6538266c821d2cfd120df
MD5 f4517bff29bdfcaaa04d9329f99d3929
BLAKE2b-256 87ce2a81027122bad1333d7fd9eaa77f430d995e48adf346a73b00a81d18aedc

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1f6989cf34d57fe0e1eefd1200417b4466177d65e8b1b5069d5c922b7db83c2b
MD5 25060358cafa3e7fa9aac3d7fd09538d
BLAKE2b-256 5fd3742062211a4126ac7d45bf0670d96851713fa0dc3d5f5a140fd9d7eaa2e1

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.3-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.3-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3e93930bc6a7855b31808234cba9f3ca02cba92d7fe2f42e77ead1ddadc605c3
MD5 927433fa30c479948d1dca029d4499ea
BLAKE2b-256 54b60575aa08729fd1b6ad206cdf35c4f0f7446cc0560101b9b4918fee2b74a8

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.3-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.3-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7ccfd9974d74aa251ba0b72e1faf38d09cf4bc2d7a0813ee79929c9897a431d0
MD5 30f35bd1a8328a196b166265187629a1
BLAKE2b-256 a1f1415ec5593e49f8e7fa9aaead0f8aa8a3aa6c41ca35530222274c0aba5f9d

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.3-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 fecc4ffae73d2ea69ae2a077e49b4881b79bc186bfb8f65007fe61bc290892f3
MD5 4c017aa90431d26578685131c687d4d6
BLAKE2b-256 c43cdf18fce2434751a77a2a5526e3b64ec7ee49ba376357b181b5e09be159df

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e23ac47cefd810e888fd91e03c3122f678a393a38d81cc67129771fd8674d081
MD5 d9b517c2bc55521ee04f3f64d62d2085
BLAKE2b-256 83f4f0f10bf21efd508515c48d931bbe23c53db9dbfec2825744c6375be84a7d

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c6dd08c8bade7e6243bf47c90af3e42378ac6e245ed51303cbd81d0926417199
MD5 4654d2779aad83b4e8b9c548869bfc89
BLAKE2b-256 ab12f6c7608368924fe165edbb7607ee7a6465aca9d2c33a33f95e667a4d6aa5

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.3-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.3-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b672991a0925e3dbd931a7833f408b8e244a20c88ab60dfd527d71f1087c6a84
MD5 1b35e92b8da675e20532eb7526311ea0
BLAKE2b-256 398aaf1791a0c93287657f5c1ef9f7e3ba9a76d04f90f066f8847cc33071d040

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.3-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.3-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 570c97bc42fb07d1c06e290500a7f211ae6a8c2eec59c09b09d8e571e164d4d5
MD5 e59b7bb562c1ecce8d094ddf20620cc9
BLAKE2b-256 d1a3ec8241c9b8330fae5a156722918f92f4c336c3cc2a142a38452b01ba8aa5

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.3-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 8ab87e01a48df615f5b342bf93bf1e82148099cb5e93d22ec693e8729e06379a
MD5 47372d3040fd3304957d1fb5cf056dbb
BLAKE2b-256 02be2982322101ff0c06dcdc683a3d82383de624e38fdfeb31d3005d5bbd252a

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1cdcfc067a071099b5eecdfcd41769432d0c3dfaf165f4b8e598e518650c59a2
MD5 265b988a60ed43ba141a1953bc3267e9
BLAKE2b-256 6852be5191c4ea2bff384056ad5d50d2566719338e0e901210b18ecd0f4177fc

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8f82db7d53b847c98b92b90a7a0067a8961e79a20104726bf5189199a9c31f5b
MD5 2cd832880d21754e303fc047c88c570c
BLAKE2b-256 9a6ba766cf50b541290db99f7894450fd3b74cfe397bf2b83b08456a9be8e712

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.3-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.3-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 586b10348e0cf08dbf2412a8d7bf378c09ec4f378eb50d4d38108794db632a09
MD5 6479129ea00627964065ed999b10cfa7
BLAKE2b-256 f00df31419a0ebe5b5db0018f4d785c64c100af45eae9dcdb04d662eca518dae

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 28ce5266b53611984dd62c3e04346eb8bc2c6b487df4639aad1240e47ab7c675
MD5 13261c8134e8e6b384cdce607d23fefa
BLAKE2b-256 d7a0d38005177ece722c3a24a7bd5c37cfbcfd57b773db6dc23d926b44f354e5

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: lets_plot-4.3.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for lets_plot-4.3.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ce03907631f45f137a249628b7b094f0c78d0d1ffdf688c5d7993070a15c1698
MD5 b9b94c7df7f357e7cfd073977ee93aa3
BLAKE2b-256 404a638f9d4bf97efae49f0ce478a07faee16414482ec9c78fb68f9687100d0c

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 64408d0f84c6086331f40bed27c40371fe8076e086c2a464b3f1c1847d2f9c26
MD5 073ea8794b67ba5ef1605a3e4716e565
BLAKE2b-256 8630e613d28426d6f514c1fd16ea13f225ec1e4c8e496f928bb6786053d55e8c

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 7762e021eabf4b98e9742c229a27e8368cee919611fde4c86747759800a08901
MD5 0a3a31a50cac60f885019cdb6a0d75fd
BLAKE2b-256 a034e32ea72da734c51e4e04d65def7659530bbad438e40d0d794b46d21b6999

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.3-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.3-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 03ecadd9099e90a0357172ca74ee4459fa713f53bb337201dc1e2e9da94deb4f
MD5 4da96870696db8fde3740bfef2be5327
BLAKE2b-256 375a153577cdc6169e9301b18e2054cbb29d48233376e50725d3f025c1fbbdb4

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c06daef00b3aa2e25b757119e48b68ef079a58be6bcca8045cddd08f11edac46
MD5 76b5aff86182b6a3ac2fb73d22bf7120
BLAKE2b-256 46e9957d0e7e08173a885a87a2e412e0f37808a91de01bc2c6f6db413b47024d

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: lets_plot-4.3.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.5 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for lets_plot-4.3.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 eaf432a1c676a28c37df7bc69a215732cbc4a46adc44e3bc598563bf4bf1d4b7
MD5 640a0fa113e7f5ca529c5290211b6598
BLAKE2b-256 e55848444fbcc4da862622df2de39257114a862617fdd75c942a89120f9a1612

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8157c3be040e903f63a677aaa34ac587f20a22cbcd93bce858b2635520cee34b
MD5 4241a87a9ee00dd2d81582f9554d869a
BLAKE2b-256 601183735c73093a7bcff5b897195aca90ad600038a28b82ef49dab1f802fd96

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 247e63600c73d093afa1654a032aa3b296179e06cce4ca14626bfde8ee1a9696
MD5 e06d9cc8237167674fa4e69a5ef9442d
BLAKE2b-256 ebbcb1be3e5c2aece0418171e0c267b5fb608a1ea660b0db4415a8308d9351aa

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.3-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.3-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d3e3db17746b8c134ab3c485cf5371af89025bdecfa04aee97468212fb4e184a
MD5 b571f2d4bbe95b19d1edd03c5a4a19f3
BLAKE2b-256 664f3817060e30d2d9827665efba0234dc6879c3f6b2cf9b28fda090eef9236a

See more details on using hashes here.

File details

Details for the file lets_plot-4.3.3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.3.3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 7e3ec31eb88b3883ca2e0b2982ed9015c14c95342bad81e2a155e6519a466a41
MD5 73d03824f0f0a198177a351e118ecd1c
BLAKE2b-256 40d4e7f76633c72476660997be21f78ffca09eb3e23006bf118bcc5dee000999

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page