Skip to main content

An open source library for statistical plotting

Project description

Lets-Plot

official JetBrains project License MIT Latest Release

Lets-Plot is a multiplatform plotting library built on the principles of the Grammar of Graphics.

The library' design is heavily influenced by Leland Wilkinson work The Grammar of Graphics describing the deep features that underlie all statistical graphics.

This grammar [...] is made up of a set of independent components that can be composed in many different ways. This makes [it] very powerful because you are not limited to a set of pre-specified graphics, but you can create new graphics that are precisely tailored for your problem.

Grammar of Graphics for Python Latest Release

A bridge between R (ggplot2) and Python data visualization.
To learn more see the documentation site at lets-plot.org.

Grammar of Graphics for Kotlin Latest Release

Notebooks

Create plots in Kotlin Notebook, Datalore, Jupyter with Kotlin Kernel
or any other notebook that supports Kotlin Kernel.
To learn more see the Lets-Plot Kotlin API project at GitHub.

Compose Multiplatform

Embed Lets-Plot charts in Compose Multiplatform applications.
To learn more see the Lets-Plot Skia Frontend project at GitHub.

JVM and Kotlin/JS

Embed Lets-Plot charts in JVM (Swing, JavaFX) and Kotlin/JS applications.
To learn more see the Lets-Plot Kotlin API project at GitHub.

"Lets-Plot in SciView" plugin

JetBrains Plugins JetBrains plugins

Scientific mode in PyCharm and in IntelliJ IDEA provides support for interactive scientific computing and data visualization.

Lets-Plot in SciView plugin adds support for interactive plotting to IntelliJ-based IDEs with the Scientific mode enabled.

Note: The Scientific mode is NOT available in communinty editions of JetBrains IDEs.

Also read:

What is new in 4.4.0

Recent Updates in the Gallery

f-24b/images/gal_venn_diagram.png f-24b/images/gal_spoke.png f-24b/images/gal_indonesia_volcanoes_on_map.png f-24b/images/gal_japanese_volcanoes_on_map.png f-24a/images/gal_bbc_cookbook.png f-24a/images/gal_penguins.png f-24a/images/gal_periodic_table.png f-24a/images/gal_wind_rose.png f-24a/images/gal_polar_heatmap.png

Change Log

CHANGELOG.md

Code of Conduct

This project and the corresponding community are governed by the JetBrains Open Source and Community Code of Conduct. Please make sure you read it.

License

Code and documentation released under the MIT license. Copyright © 2019-2024, JetBrains s.r.o.

Project details


Release history Release notifications | RSS feed

This version

4.4.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

lets_plot-4.4.0-cp312-cp312-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.12Windows x86-64

lets_plot-4.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

lets_plot-4.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ARM64

lets_plot-4.4.0-cp312-cp312-macosx_11_0_arm64.whl (3.2 MB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

lets_plot-4.4.0-cp312-cp312-macosx_10_9_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.12macOS 10.9+ x86-64

lets_plot-4.4.0-cp311-cp311-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.11Windows x86-64

lets_plot-4.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

lets_plot-4.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

lets_plot-4.4.0-cp311-cp311-macosx_11_0_arm64.whl (3.2 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

lets_plot-4.4.0-cp311-cp311-macosx_10_9_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

lets_plot-4.4.0-cp310-cp310-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.10Windows x86-64

lets_plot-4.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

lets_plot-4.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

lets_plot-4.4.0-cp310-cp310-macosx_11_0_arm64.whl (3.2 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

lets_plot-4.4.0-cp310-cp310-macosx_10_9_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

lets_plot-4.4.0-cp39-cp39-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.9Windows x86-64

lets_plot-4.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

lets_plot-4.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

lets_plot-4.4.0-cp39-cp39-macosx_11_0_arm64.whl (3.2 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

lets_plot-4.4.0-cp39-cp39-macosx_10_9_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

lets_plot-4.4.0-cp38-cp38-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.8Windows x86-64

lets_plot-4.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

lets_plot-4.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ARM64

lets_plot-4.4.0-cp38-cp38-macosx_11_0_arm64.whl (3.2 MB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

lets_plot-4.4.0-cp38-cp38-macosx_10_9_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

File details

Details for the file lets_plot-4.4.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: lets_plot-4.4.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for lets_plot-4.4.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 15e3f72d07b3b12c40b191cd2b5d172669d47e88264bf24335f1642ef25648fd
MD5 0975e8bd48d92d41b674cc6045d60fb3
BLAKE2b-256 9e54a7407a3e9cad25aa9765885ce0322b86ebf5aa1be043b6ab950c6d7f0df0

See more details on using hashes here.

File details

Details for the file lets_plot-4.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.4.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8fcf39a882ea8952d15eb01384919559d900a4238c54e900dfa768b1f62db42d
MD5 2f4a1ef7587dc4bcc743d82612230b7a
BLAKE2b-256 58208b80b4cbc8490c8ec2787b5bf79619d952337ccc87a6d1803593b6a1bc56

See more details on using hashes here.

File details

Details for the file lets_plot-4.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.4.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c7e63080aee3398103be0c1dc6dc83a0c6f1dd77192d9e61d436c68421a94acf
MD5 522df3a90c5bcdede193616a4c75026a
BLAKE2b-256 72083a6e7791c1ce1cdcd36b9f1219017e186b2c5b424a7bcba9ef1016e0e7e2

See more details on using hashes here.

File details

Details for the file lets_plot-4.4.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-4.4.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 848175597196196797dfb5b7cc4608dbd6ceab24f314d302bb0b85429a69c870
MD5 6ff603bb0ec7a405e22546c608657099
BLAKE2b-256 eb90bca1f7f165e5e90459c04a48cbb4415d7b542cbccb2f3cf294bd3ba2b265

See more details on using hashes here.

File details

Details for the file lets_plot-4.4.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.4.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1ac3e509eb9c29da51b06ee5e527c33b56d4448488b8690716895592a30969c6
MD5 2519c3f517da78eb6a01b5213c8a6629
BLAKE2b-256 ec5bad416b12b4b0b6e6bd342dfb9823d4914a0b9bf65b3ff816fd23a262a62f

See more details on using hashes here.

File details

Details for the file lets_plot-4.4.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: lets_plot-4.4.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for lets_plot-4.4.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 9f644473fcc111c2a6f4892a928aecbe58d520f6eace3e810d925c8eabf43eb5
MD5 1a1c2d859724904c539be9059a47c7b0
BLAKE2b-256 be83d2071c6745e968b1a9f4c97118d42d9128e6c47520e6b87459bf0991bc04

See more details on using hashes here.

File details

Details for the file lets_plot-4.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.4.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9c06bcec23c337aea8f931c6e4deea1af4d77a1537702035c5a237bf81c81e39
MD5 03cc6ac1aa0b74eb5b4e32009b95eb70
BLAKE2b-256 b1b9c7670c483aeff03eb1efb50b25540901dff6b432d1feeddc6793467bf263

See more details on using hashes here.

File details

Details for the file lets_plot-4.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.4.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4e140f4d4649c4859bffc2a4b850afba5115806e712ef72431ebb1f3dac71723
MD5 aecb3e2863bf2e66959b56b0274a6ac6
BLAKE2b-256 4d56c5253d17fc7b4460ba780dc90f5797191fc60665298cfa71c53454b7e0aa

See more details on using hashes here.

File details

Details for the file lets_plot-4.4.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-4.4.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8ae2a9e0db4f5ea690c168e62d0d006a05b5c73b206db4df2bb251cc4f9a7941
MD5 584322c40d6ba092b387451c8abf8698
BLAKE2b-256 757497ff62d31e9cfecabfcf9a05352b873cffc51eaf48b8bce35f53195b0925

See more details on using hashes here.

File details

Details for the file lets_plot-4.4.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.4.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 005ed61ac19d2efacbbd4d00433fc503b3e62abe542ae9a7e5ade40a524c6005
MD5 0cdde84dc1b064ecc7815a2041703621
BLAKE2b-256 ca75460e75f4b613301646417adaec8ec23e8b9f05c2a6ff9265085f3a0c56e1

See more details on using hashes here.

File details

Details for the file lets_plot-4.4.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: lets_plot-4.4.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for lets_plot-4.4.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 3e0420b4fc942cd63cfaecf2d63cb64a79f46e5c464254ff5c86f072ff55681e
MD5 8c2719388cf8d17e79cbb30b91853642
BLAKE2b-256 2dee9f12eb6effd897b2e46c37fcb8aa08b5a5937a0d0c45e71fd6a049af2298

See more details on using hashes here.

File details

Details for the file lets_plot-4.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.4.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4999409044dadcc9de71678601fa15731518b8d1608383675f7110feaf5139e2
MD5 24fd70669c2bac61dfc9459eff64c761
BLAKE2b-256 1d9068444d38327410d889ba9d41198e3307ca8ad25ca1c8ab3eed85db57a3ed

See more details on using hashes here.

File details

Details for the file lets_plot-4.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 730312955a34ab9ba2e20b40a0bea935660c4634dc1f0ea63d9932205a3eee15
MD5 33e010eeb4d9d58bc7e1f367094ae192
BLAKE2b-256 ebb725dc94a07fd3b839ce9ea5624785a51494d900457dc183226f43322099d4

See more details on using hashes here.

File details

Details for the file lets_plot-4.4.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-4.4.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5e4ee5db1dbc99ddf4804faa57463a0a2a5ee956b0fb8d3071fbc9afe88c2c63
MD5 2e680a119530b4782410792bc0fa418c
BLAKE2b-256 496d1a3f5bf8f6c73f3c8f8ef63caa110b4f1c5afcf30f3c153c4b4b9d868aec

See more details on using hashes here.

File details

Details for the file lets_plot-4.4.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.4.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 5f4ad25dc8c0f855a3349760f6babc76c9b8644b9c6fd1e2e55ac052c8a46064
MD5 7a9603554e06ad778e7c1e8c73f5e26f
BLAKE2b-256 85412e1e1aa8cc1733e568572314a13d843d2d81ab4f131e6400d7ee1942df10

See more details on using hashes here.

File details

Details for the file lets_plot-4.4.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: lets_plot-4.4.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for lets_plot-4.4.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 fa94b68e2fe0245f68fce7be30a7bede21a6c4c147da070e917319900a77b2dc
MD5 469eaeb1c0562e147d0463ec5e615631
BLAKE2b-256 6ea832c5e6a1c0f517b490af98fb9389ed216e83ce018d0c43875e66f65b6158

See more details on using hashes here.

File details

Details for the file lets_plot-4.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.4.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ec4d456ca7a38ace301f4ab14fab54e187384c30f519b47791fe0872b8cdd316
MD5 becb2d995a02f78e4f8742dace22983f
BLAKE2b-256 e48ba600de9ffeb689c5536d446720ba4595dd7493d46207f44ec72687cdf576

See more details on using hashes here.

File details

Details for the file lets_plot-4.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.4.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0a50e3d95420d51f69bd25eb6ec29be7cfb15fa4b6c59e131583091ec8a9effa
MD5 9e01dcec8f713af667b05a78ba5769c5
BLAKE2b-256 f26cc7c020b1ed6fe7413fc4e802b7d3ea3ca3b9bdb7edfb9935250c5fc98d04

See more details on using hashes here.

File details

Details for the file lets_plot-4.4.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-4.4.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 285e6131a9a304c300e019e10a1699a783bfc89a71143087babd67f4e633b42f
MD5 c0123f36a810a66bf7ef53e905477189
BLAKE2b-256 c6cc5473fb928b66d9efa644c02140ef8ce73c3d2577d6f8c6a6430142aa9289

See more details on using hashes here.

File details

Details for the file lets_plot-4.4.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.4.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 aa84a5f21b91e3013222cca977a38517f57a32c9b189e67d9e6330d0d40824cc
MD5 4728bdbf013b482e5433fff63c5bda92
BLAKE2b-256 757eac0f274b06901c2db1f1fb3cbb154968a91d2c258206b74e218021a703ef

See more details on using hashes here.

File details

Details for the file lets_plot-4.4.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: lets_plot-4.4.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for lets_plot-4.4.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 2f9373cfd369c1bc1d2f29de9df236d84cf7d0cce550e4853306795614d68a35
MD5 60be392b5e6bd92af01c59f0d905298a
BLAKE2b-256 3501d7e2488f6caa9a57cb4f2bc086987de8ed43b58c639aceac32a90ab90b0e

See more details on using hashes here.

File details

Details for the file lets_plot-4.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.4.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 119997f77c42386ab87d185dce1c8640a4b1fc2c331641b4af32c4ac42451fae
MD5 43667dab5f7313e6d4ce1a63f742cc77
BLAKE2b-256 6171469e1f548037c6de58b1f16f05de6f4310bca421d29eecc3316168c5a976

See more details on using hashes here.

File details

Details for the file lets_plot-4.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.4.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c3667bb4a97fe2e120f64df3fdfc83abf97d5d9fb7dfda699150c393456b3d41
MD5 315f284e258b0f9042152621494b86ba
BLAKE2b-256 50738254809a57ab8f6fd68e997a943cfd9ff78dd1d29070a91f477943ac933f

See more details on using hashes here.

File details

Details for the file lets_plot-4.4.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-4.4.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cf0de7dd30db6283f582ee5afa2bb84f317dc03c57864f44620f5c3c4cd44b28
MD5 51c05f808aeef33257a03ad17982ba23
BLAKE2b-256 7c5ee69fcdff7e96e8ff09b82e0c5d49f1ee10296807dc773fc6826e7f421b51

See more details on using hashes here.

File details

Details for the file lets_plot-4.4.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.4.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9e794c5c70b9cc6cef21da2d0b598a6a529cd2b696fc71f8deb9a902f9095849
MD5 2013c2c8327dbeb068e2372d3b3b7c8d
BLAKE2b-256 bffbf8254ba2320ac0016268313fe9778b33c9de40bb22154df71bffa527c497

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page