Skip to main content

An open source library for statistical plotting

Project description

Lets-Plot

official JetBrains project License MIT Latest Release

Lets-Plot is a multiplatform plotting library built on the principles of the Grammar of Graphics.

The library' design is heavily influenced by Leland Wilkinson work The Grammar of Graphics describing the deep features that underlie all statistical graphics.

This grammar [...] is made up of a set of independent components that can be composed in many different ways. This makes [it] very powerful because you are not limited to a set of pre-specified graphics, but you can create new graphics that are precisely tailored for your problem.

Grammar of Graphics for Python Latest Release

A bridge between R (ggplot2) and Python data visualization.
To learn more see the documentation site at lets-plot.org.

Grammar of Graphics for Kotlin Latest Release

Notebooks

Create plots in Kotlin Notebook, Datalore, Jupyter with Kotlin Kernel
or any other notebook that supports Kotlin Kernel.
To learn more see the Lets-Plot Kotlin API project at GitHub.

Compose Multiplatform

Embed Lets-Plot charts in Compose Multiplatform applications.
To learn more see the Lets-Plot Skia Frontend project at GitHub.

JVM and Kotlin/JS

Embed Lets-Plot charts in JVM (Swing, JavaFX) and Kotlin/JS applications.
To learn more see the Lets-Plot Kotlin API project at GitHub.

"Lets-Plot in SciView" plugin

JetBrains Plugins JetBrains plugins

Scientific mode in PyCharm and in IntelliJ IDEA provides support for interactive scientific computing and data visualization.

Lets-Plot in SciView plugin adds support for interactive plotting to IntelliJ-based IDEs with the Scientific mode enabled.

Note: The Scientific mode is NOT available in communinty editions of JetBrains IDEs.

Also read:

What is new in 4.4.0

Recent Updates in the Gallery

f-24e/images/us_unemployment.png f-24b/images/gal_venn_diagram.png f-24b/images/gal_spoke.png f-24b/images/gal_indonesia_volcanoes_on_map.png f-24b/images/gal_japanese_volcanoes_on_map.png f-24a/images/gal_bbc_cookbook.png f-24a/images/gal_penguins.png f-24a/images/gal_periodic_table.png f-24a/images/gal_wind_rose.png f-24a/images/gal_polar_heatmap.png

Change Log

CHANGELOG.md

Code of Conduct

This project and the corresponding community are governed by the JetBrains Open Source and Community Code of Conduct. Please make sure you read it.

License

Code and documentation released under the MIT license. Copyright © 2019-2024, JetBrains s.r.o.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

lets_plot-4.4.1-cp312-cp312-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.12Windows x86-64

lets_plot-4.4.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

lets_plot-4.4.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ARM64

lets_plot-4.4.1-cp312-cp312-macosx_11_0_arm64.whl (3.2 MB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

lets_plot-4.4.1-cp312-cp312-macosx_10_9_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.12macOS 10.9+ x86-64

lets_plot-4.4.1-cp311-cp311-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.11Windows x86-64

lets_plot-4.4.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

lets_plot-4.4.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

lets_plot-4.4.1-cp311-cp311-macosx_11_0_arm64.whl (3.2 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

lets_plot-4.4.1-cp311-cp311-macosx_10_9_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

lets_plot-4.4.1-cp310-cp310-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.10Windows x86-64

lets_plot-4.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

lets_plot-4.4.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

lets_plot-4.4.1-cp310-cp310-macosx_11_0_arm64.whl (3.2 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

lets_plot-4.4.1-cp310-cp310-macosx_10_9_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

lets_plot-4.4.1-cp39-cp39-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.9Windows x86-64

lets_plot-4.4.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

lets_plot-4.4.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

lets_plot-4.4.1-cp39-cp39-macosx_11_0_arm64.whl (3.2 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

lets_plot-4.4.1-cp39-cp39-macosx_10_9_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

lets_plot-4.4.1-cp38-cp38-win_amd64.whl (2.9 MB view details)

Uploaded CPython 3.8Windows x86-64

lets_plot-4.4.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.1 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

lets_plot-4.4.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.1 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ARM64

lets_plot-4.4.1-cp38-cp38-macosx_11_0_arm64.whl (3.2 MB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

lets_plot-4.4.1-cp38-cp38-macosx_10_9_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

File details

Details for the file lets_plot-4.4.1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: lets_plot-4.4.1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for lets_plot-4.4.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 6fec5fbb3ebc568dc2bc96ba6cfb658c50503c273bb4a7bc61235767f8aa1cd4
MD5 295d8551b59a2d8f573bfbbad3bfbb37
BLAKE2b-256 296f7f31a52589d26e1780dea0b3960ed882577e3e144b1f1a3a287461b57f59

See more details on using hashes here.

File details

Details for the file lets_plot-4.4.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.4.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5f9ac2cfeee73df8fb32bb341955267770a9d4858a2e2386c4597646d55af62e
MD5 2df053039a7e72e1b102d74af6f9508f
BLAKE2b-256 a72447be185d81bdbb8afccdedd6f134d070aefb6ca520e5419b92316bd6b4fe

See more details on using hashes here.

File details

Details for the file lets_plot-4.4.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.4.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5db1f13268f2e1b88b308c3f0983951e55d72a8d6467a1dbb2536241bb4f878e
MD5 308ef6c7d7411252b6291d1c9fa5923f
BLAKE2b-256 723fdc4a2561d0511027c3e6084316852d23501db79ed801f1d6fb0f484235aa

See more details on using hashes here.

File details

Details for the file lets_plot-4.4.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-4.4.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 dfc51600aaddecd3414d8a9aae825a5bd1b29a84dc0921022438f0e50fd855cf
MD5 a093704580d40b1f12ab842d526d9a77
BLAKE2b-256 4fc4834efcdd54068bc63eb0422a4f45d9957c3dafb127c842f045b0b9724f1d

See more details on using hashes here.

File details

Details for the file lets_plot-4.4.1-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.4.1-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0186e3ed79f3f73295b2543a965576b7655fe96ed8a266551e54544c78e96784
MD5 cf412c2054e7d5c32bc2be6d406b90d2
BLAKE2b-256 ff824a3769d1c7855d9a1b54cba5174b20c7ab133ac6a38b4a4ad5464171d13c

See more details on using hashes here.

File details

Details for the file lets_plot-4.4.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: lets_plot-4.4.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for lets_plot-4.4.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 1aa860cdc4793593873cfd896a6e08c8e90b7d22bbad146dd818b0aaf78c1284
MD5 c80e04f50ab0707e8244fc474157f9f3
BLAKE2b-256 1660e1ef0bbf8d5798d53cad5b36bcbbd7aaeff94770acac9c40c33d0e737ed4

See more details on using hashes here.

File details

Details for the file lets_plot-4.4.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.4.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 539c62fbd3a08a1f987b12908f2ff7a64a3e60ad9fec5682e70f6be00ff6b042
MD5 6c63e8175d3d8f05ee0b485c9e4913ab
BLAKE2b-256 64afc3ba6a9334ccb39ef7323f3be576f2e6469e27a52c3d3d4db2683054aba4

See more details on using hashes here.

File details

Details for the file lets_plot-4.4.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.4.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ed70b306766f60d2c67a019a9c5d6f9b495c409d269366baaa009dc796fd1eb4
MD5 f1b4ec8700480f7a8d21cbe6092c47c1
BLAKE2b-256 3217526ae386238e666fa2264e03f8eef1da6f6ad67ec19c2fa37ab881f244e4

See more details on using hashes here.

File details

Details for the file lets_plot-4.4.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-4.4.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 f90891aa372321fbdfdf2e108707fe01af4499a46681d8ffdccaa12bad0db259
MD5 e29afce2b746b58fa173aeb701d1a1cb
BLAKE2b-256 8b38cc26629d0fd42b813b09501fb04d0dad2c855930510eaf31038b7c224908

See more details on using hashes here.

File details

Details for the file lets_plot-4.4.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.4.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b4b4488eb134aa794e0eb3678cf428a405b4af1d2a707264a59d2fe5a7fa924d
MD5 4d010bd91b124c70d83ef6e169efa542
BLAKE2b-256 fee95e32fbe1bf88d6603dd864adc17bebe3c89b34f7fb9dc3c8d63afdea926d

See more details on using hashes here.

File details

Details for the file lets_plot-4.4.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: lets_plot-4.4.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for lets_plot-4.4.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 d27cb8cd59485b7707e3b0a67c461702e24dd8dc220edbfc907dd43a50a2df92
MD5 8726895aeb327e86140f8e5f924aba34
BLAKE2b-256 2a4fb1d316cfb240168aaff1e6fa9c15c061ab88b81e4201f019a0fa39bac589

See more details on using hashes here.

File details

Details for the file lets_plot-4.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.4.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 af8d67476343cb3477f839ed1204e56bfbe50d475c1e74b4c5e35a9b87163adf
MD5 ad5813cdcdbc52bbc4e7b5580499c70f
BLAKE2b-256 d5a01f3558a7e8bc9fdd037de1fed677b119c1dad7f73853637e94919d5b5a08

See more details on using hashes here.

File details

Details for the file lets_plot-4.4.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.4.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 237e9508df023ab4fdbb275a92c3c0b5575d04e78769cf697402ecbbbc294327
MD5 b67f90fe78bd1c89e86b025232e2d55b
BLAKE2b-256 5d9dfe11c1785965f6fff0529a6eaa36cf35b253ab97c532ebab370d224ea9bb

See more details on using hashes here.

File details

Details for the file lets_plot-4.4.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-4.4.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9971ac6d949f710dd54b0d7bfe9e70ea7362420867c63919e1c2c194b94e6362
MD5 9bed924d3cdb1e5e83e3434ee209cb52
BLAKE2b-256 0206b1347e23030f1498e3c3ca63b210d811153f3e38a8b19d1a9c89af7bbc85

See more details on using hashes here.

File details

Details for the file lets_plot-4.4.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.4.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 eff261b7242f6ac07c15e64918671e3ad7edc421166b60fae1e5701e8bb346da
MD5 353ffcd4e94e30f90b5ac5a2d57eb8b3
BLAKE2b-256 d92672b99dc67634bfb54d5c0f2e9e77e93a8f7141523f180c8190ec7f327036

See more details on using hashes here.

File details

Details for the file lets_plot-4.4.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: lets_plot-4.4.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for lets_plot-4.4.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 6e6ad005ff6ac8bb4ff5ea2970826163fd72c6cd721f8710cf429a0e606616c6
MD5 18160c30804705534cb1b9cf5b54c1b8
BLAKE2b-256 03da4215ec71eee45a6c4b0862b851a0a641c3097fa12ab8eb7e79dcbc4ea990

See more details on using hashes here.

File details

Details for the file lets_plot-4.4.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.4.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 75346f99ebd69f576e0c445525425f5ea866864f12577db5b83c951abc48580a
MD5 e1e876159377585c08507650e1fecc3d
BLAKE2b-256 c1ea79329982ada7ab7e748e255514efe653f8941202685067cf136d67f8faae

See more details on using hashes here.

File details

Details for the file lets_plot-4.4.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.4.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b6e219b2484a7219440f5b5a9d4b88abc8662032f02816203e08dd6043bf5bf0
MD5 55d297e8323742896927a6907d60252e
BLAKE2b-256 f4051fe6037963932e03f291cd4d50df4bf22c1978e0939db5d3c5ff730e49aa

See more details on using hashes here.

File details

Details for the file lets_plot-4.4.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-4.4.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c545d80f083f948a128ea1bad444fd016eb3c89e3787a9a962eb92daf64cf244
MD5 73361ebaaeb92f5eafd90296c4916553
BLAKE2b-256 96bfa1f299f73b012b2d923c71f1cc203f19dc2ac7776a0a09bec29cbaf5531d

See more details on using hashes here.

File details

Details for the file lets_plot-4.4.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.4.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6992c4778a05fc70fb3ac47641054c671e6690c03e736547ee8893f12744f197
MD5 fb3e182b66a35e9ec5f643e2770a36dd
BLAKE2b-256 8649a7ffbceceff2d1e2aa48b49b141a54052c5c362045f0d5e9e6f1cdc35cae

See more details on using hashes here.

File details

Details for the file lets_plot-4.4.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: lets_plot-4.4.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for lets_plot-4.4.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 baab080012bb909e3d675c0360c661d88cd11cc6f33473ec9c835d13702093aa
MD5 f66264beb7f5f31eeb38368cdd07bbd2
BLAKE2b-256 0585f9f6e251e89722694b96621a89dd70ec030a8351ff944b7689f44e5e9647

See more details on using hashes here.

File details

Details for the file lets_plot-4.4.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.4.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ba9d6b026bd0883a8b9b700e63d7d8ba73c77add7571d3d8ce98642fb35db1a6
MD5 ada32e455aa543027031246f9475d0d3
BLAKE2b-256 f7c3aeda811fb6174bb9d281a516be0bbdf09aa66081303c7cd5d2ae0d0ad203

See more details on using hashes here.

File details

Details for the file lets_plot-4.4.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.4.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 34079fba0d66dde25cb829991901d5b0510380efca49da00869ea4331c798755
MD5 ea1698823476daa866a5125042e7c7d3
BLAKE2b-256 4990411a2a547860dcdd63fefa3bd615e9857145cfc15ff17f94e23971f3cc72

See more details on using hashes here.

File details

Details for the file lets_plot-4.4.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-4.4.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 32a4a89fddd242be97efa95c19388036d51d061b802adc1575d648fd9e5443a3
MD5 bac61039741243716fab38c6fe69e73c
BLAKE2b-256 55662c19c3d895f6a7c7d4330ecb4ca16f747711867d1f1dd2f0807ac5f1a97f

See more details on using hashes here.

File details

Details for the file lets_plot-4.4.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.4.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6303f405b4b826ff2ce1a49b7928c41fdb48ae736da03072d19ab4c5c8a3523c
MD5 058f4d7478ce2e09b7f8394a6ebd7a08
BLAKE2b-256 a81de95d819bd0088237595bd6a92eb747afe560277e4db2e490dcdd41474d29

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page