Skip to main content

An open source library for statistical plotting

Project description

Lets-Plot

official JetBrains project License MIT Latest Release

Lets-Plot is a multiplatform plotting library built on the principles of the Grammar of Graphics.

The library' design is heavily influenced by Leland Wilkinson work The Grammar of Graphics describing the deep features that underlie all statistical graphics.

This grammar [...] is made up of a set of independent components that can be composed in many different ways. This makes [it] very powerful because you are not limited to a set of pre-specified graphics, but you can create new graphics that are precisely tailored for your problem.

Grammar of Graphics for Python Latest Release

A bridge between R (ggplot2) and Python data visualization.
To learn more see the documentation site at lets-plot.org.

Grammar of Graphics for Kotlin Latest Release

Notebooks

Create plots in Kotlin Notebook, Datalore, Jupyter with Kotlin Kernel
or any other notebook that supports Kotlin Kernel.
To learn more see the Lets-Plot Kotlin API project at GitHub.

Compose Multiplatform

Embed Lets-Plot charts in Compose Multiplatform applications.
To learn more see the Lets-Plot Skia Frontend project at GitHub.

JVM and Kotlin/JS

Embed Lets-Plot charts in JVM (Swing, JavaFX) and Kotlin/JS applications.
To learn more see the Lets-Plot Kotlin API project at GitHub.

"Lets-Plot in SciView" plugin

JetBrains Plugins JetBrains plugins

Scientific mode in PyCharm and in IntelliJ IDEA provides support for interactive scientific computing and data visualization.

Lets-Plot in SciView plugin adds support for interactive plotting to IntelliJ-based IDEs with the Scientific mode enabled.

Note: The Scientific mode is NOT available in communinty editions of JetBrains IDEs.

Also read:

What is new in 4.5.0

[!CAUTION]
Subscripts and superscripts are not supported in PDF and PNG exports.

[!CAUTION]
pow and pow_full options are not supported in PDF and PNG exports.

Recent Updates in the Gallery

f-24e/images/us_unemployment.png f-24b/images/gal_venn_diagram.png f-24b/images/gal_spoke.png f-24b/images/gal_indonesia_volcanoes_on_map.png f-24b/images/gal_japanese_volcanoes_on_map.png f-24a/images/gal_bbc_cookbook.png f-24a/images/gal_penguins.png f-24a/images/gal_periodic_table.png f-24a/images/gal_wind_rose.png f-24a/images/gal_polar_heatmap.png

Change Log

CHANGELOG.md

Code of Conduct

This project and the corresponding community are governed by the JetBrains Open Source and Community Code of Conduct. Please make sure you read it.

License

Code and documentation released under the MIT license. Copyright © 2019-2024, JetBrains s.r.o.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

lets_plot-4.5.2-cp313-cp313-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.13Windows x86-64

lets_plot-4.5.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64

lets_plot-4.5.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.4 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ ARM64

lets_plot-4.5.2-cp313-cp313-macosx_11_0_arm64.whl (3.2 MB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

lets_plot-4.5.2-cp313-cp313-macosx_10_15_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.13macOS 10.15+ x86-64

lets_plot-4.5.2-cp312-cp312-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.12Windows x86-64

lets_plot-4.5.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

lets_plot-4.5.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.4 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ARM64

lets_plot-4.5.2-cp312-cp312-macosx_11_0_arm64.whl (3.2 MB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

lets_plot-4.5.2-cp312-cp312-macosx_10_9_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.12macOS 10.9+ x86-64

lets_plot-4.5.2-cp311-cp311-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.11Windows x86-64

lets_plot-4.5.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

lets_plot-4.5.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.4 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

lets_plot-4.5.2-cp311-cp311-macosx_11_0_arm64.whl (3.2 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

lets_plot-4.5.2-cp311-cp311-macosx_10_9_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.11macOS 10.9+ x86-64

lets_plot-4.5.2-cp310-cp310-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.10Windows x86-64

lets_plot-4.5.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

lets_plot-4.5.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.4 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

lets_plot-4.5.2-cp310-cp310-macosx_11_0_arm64.whl (3.2 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

lets_plot-4.5.2-cp310-cp310-macosx_10_9_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.10macOS 10.9+ x86-64

lets_plot-4.5.2-cp39-cp39-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.9Windows x86-64

lets_plot-4.5.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

lets_plot-4.5.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.4 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

lets_plot-4.5.2-cp39-cp39-macosx_11_0_arm64.whl (3.2 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

lets_plot-4.5.2-cp39-cp39-macosx_10_9_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.9macOS 10.9+ x86-64

lets_plot-4.5.2-cp38-cp38-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.8Windows x86-64

lets_plot-4.5.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

lets_plot-4.5.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.4 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ARM64

lets_plot-4.5.2-cp38-cp38-macosx_11_0_arm64.whl (3.2 MB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

lets_plot-4.5.2-cp38-cp38-macosx_10_9_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.8macOS 10.9+ x86-64

File details

Details for the file lets_plot-4.5.2-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: lets_plot-4.5.2-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for lets_plot-4.5.2-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 60cf5eac23f2a2db7608f25942f9b82e4e55e7eea550510975687f1a3552e383
MD5 a157c1ae422e8bab9eb16bbff7ed78c1
BLAKE2b-256 8e6bde52fe9273a81c27baa7471469f7223c963494826e2fdbc28bd9e8269430

See more details on using hashes here.

File details

Details for the file lets_plot-4.5.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.5.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a307d36b125003cc3e31e9238de64ed36a0cc520486dfabeb486d1be7c0ee973
MD5 3be158f89a9ba72408ff66bdb414f67a
BLAKE2b-256 a5fcf1554440a3cf0049219d542007f726fee869c40e69c5f91b88a33b92acf9

See more details on using hashes here.

File details

Details for the file lets_plot-4.5.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.5.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 a4234b274f15ece4ff1af102a436367664e281797e2e92cd4a1eebea621bcfa8
MD5 d0b7790f1a8c5a37234659dba709d214
BLAKE2b-256 a552d5028b033e39a14b6d09071f55a2418e8a5bc923639ac725433dbe644460

See more details on using hashes here.

File details

Details for the file lets_plot-4.5.2-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-4.5.2-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 373bac36207cbbd70e77b186c7d3b0c6054dc1f1fca1af4c1c56dba75aab04f5
MD5 9c724d5ca0ce2924f6ae3aa6ab7312a6
BLAKE2b-256 b121fe8bbd833663eb5b6d7cc5257e27b263af75fc7badb2516f57f8f0c1d2f9

See more details on using hashes here.

File details

Details for the file lets_plot-4.5.2-cp313-cp313-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.5.2-cp313-cp313-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 c19cc973742bcbe2edb0a18d3019388793c3a2020d38ddd2b1ed66a8ac11746f
MD5 065ab4cfc13edf147476fdb5170f1cb1
BLAKE2b-256 5760215423592541788fab7bedc7826652cd1b1d2090708efd4f1413f3ef70cd

See more details on using hashes here.

File details

Details for the file lets_plot-4.5.2-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: lets_plot-4.5.2-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for lets_plot-4.5.2-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 94d072efb7367b8db1897e50e847b86e898ec41bd8b699ae6241bdfacd868f91
MD5 507468b15c3c1a27e478ee6eafdfc696
BLAKE2b-256 72567cfb3926cd6f17f9453c2e2dc6b649a27ba240ff59b99fadc42abe06b806

See more details on using hashes here.

File details

Details for the file lets_plot-4.5.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.5.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3d231713a4672e1c6227217e93663582f7cc195d4548e6156484f88fcb5a2da8
MD5 6666ac69008ff043b23819f75f1b8baa
BLAKE2b-256 8c0c71942f05a2d65939f1572168e77d61240eddf7050c961d8e2c7214f48002

See more details on using hashes here.

File details

Details for the file lets_plot-4.5.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.5.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ce773cf20357294594186d6ab25cf12feef32103f81479e89fff15984239a008
MD5 1ff879bb8aa9255a1154cf0dd65e7a64
BLAKE2b-256 c22436d3db606d5bc0b7c811df9d28746c03c44c7ed182699cfb86b6af605a96

See more details on using hashes here.

File details

Details for the file lets_plot-4.5.2-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-4.5.2-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 75aa39b102699648a8b108eacbd17fdadcaf2bf19b52f748091e8c38b45fb5f8
MD5 83c1abce10eaa8e0c866b84628426842
BLAKE2b-256 f6573f64c62eb4ec0631d23c5130129350c00257345b11a0729fef99fa844c8f

See more details on using hashes here.

File details

Details for the file lets_plot-4.5.2-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.5.2-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6a050057f1d89d9a81f01986ad76ef9cd23d73f18bf5d4f5622203f03dbe4b86
MD5 040b4e3aa2e39345088f58f8e141aaca
BLAKE2b-256 716e791176429594d6443c99abeaf1688f9f5164bec7fefe78de307b78b97800

See more details on using hashes here.

File details

Details for the file lets_plot-4.5.2-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: lets_plot-4.5.2-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for lets_plot-4.5.2-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 48ac358d64720d97c0076c578e07e519ce397feba4f400de82c1af8ff03cec41
MD5 6926761fc146d70a7ecfb129fcab30a3
BLAKE2b-256 305da118994f71088ac6efd186b4163817694e433efab4cbb78d68d74c1e0983

See more details on using hashes here.

File details

Details for the file lets_plot-4.5.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.5.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1bc0a4ba72402a6b33fe04c31af0b4c3a109a686a5868bdc4924dc96cc48fcec
MD5 26447b3d41b7b4bd378e0b5f1d154444
BLAKE2b-256 195bb9a4144a0526db0b2a70439ae66c0775aeae10d630538d4ea94d82df0b47

See more details on using hashes here.

File details

Details for the file lets_plot-4.5.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.5.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 863ded0c8f5afa88bc3cfa40a778a424f48769f1bd24b610b7f7acc77bc3a195
MD5 cc854a82df65cbdbc213ec763cc8f563
BLAKE2b-256 3d90aea523bf42175bf37bba6056c3162c92cd6c1b03ab6744f6184600914006

See more details on using hashes here.

File details

Details for the file lets_plot-4.5.2-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-4.5.2-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 299391b41cf3c4ce4836debaf31b31f00e8c2c28bad1b1dbd1fe0f910e126ba0
MD5 fbde30309f191e46f7c8780992d15290
BLAKE2b-256 a369bcc432ffbc501b62dffa6a0948a54d832cfbbfbaa9fd8759e88ebc65aab6

See more details on using hashes here.

File details

Details for the file lets_plot-4.5.2-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.5.2-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f49cd08e594f68545fe7c60313cfe7e056730d07281df3036933073f714993ea
MD5 f7c36aaebf3885e93c80baf21485509b
BLAKE2b-256 cd2102775d4e6e7be99f61b691ee611ea3bac4ce147c7af46a3049cc2b0bc36e

See more details on using hashes here.

File details

Details for the file lets_plot-4.5.2-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: lets_plot-4.5.2-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for lets_plot-4.5.2-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 87283c537777f1a5b4a5efafa39af7e4adbc0cbd6bf73be31d4abd786522f751
MD5 2f5b891bd8cf88c93496c275bc6ddb45
BLAKE2b-256 b2d87ac7fd964aa71c734f8c43fa95bb44d3ea77aa0c9e7c2b7f6351955132b2

See more details on using hashes here.

File details

Details for the file lets_plot-4.5.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.5.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 65356342718efc676337b529ad41bc5dfc0b31dafd9252ce777a9a0356ba86e4
MD5 bd376f4420c1140e28ee83550498455e
BLAKE2b-256 0f9b5a3da3a641ed1c0a62f8a022f37b711c8566b905f9800696707cff2e9154

See more details on using hashes here.

File details

Details for the file lets_plot-4.5.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.5.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0dcea3d987c83b7b75235645b6a126327e25aee7dc2a10ba880211566a435b61
MD5 9ac40b1732d62f6906f6fe9b457e0748
BLAKE2b-256 96a36e434d3197db2a82576f9ea309c45fbfbe33d80149652b056169c80a6935

See more details on using hashes here.

File details

Details for the file lets_plot-4.5.2-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-4.5.2-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 077fd74969a97beecd2d8f338ab4dadd630aa1cf4099d3814b1926cd571c9971
MD5 bf02f2c887c90af99eb0f8d8916727c8
BLAKE2b-256 e934fbb605cf40e77a35e84f0623c16b571ac1d000ca59f731ea34ffb3ded8da

See more details on using hashes here.

File details

Details for the file lets_plot-4.5.2-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.5.2-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 34b3cc5c74ae23c8c3c6a5b6d0b42f147a53ddb76e2f83eeec3c8f7ac283e2e9
MD5 c8d5de1cdf5c1ee9f0251c6befbe68b5
BLAKE2b-256 abd974616e950b7d79a9e8b2769011b289f7f50ef529c575a3f32ab040a9e386

See more details on using hashes here.

File details

Details for the file lets_plot-4.5.2-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: lets_plot-4.5.2-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for lets_plot-4.5.2-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 dfaefd7bc7e1db4bf5f7881d2132d0354ac4b06b5249a9415446661ffccf9fde
MD5 a676f0d1ff94e3ed684eaaa687fa748c
BLAKE2b-256 2f64c2a0bdef1a8367d800c90b7505d89ecf620f27caf4268223f4f78cbb88c6

See more details on using hashes here.

File details

Details for the file lets_plot-4.5.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.5.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e44fbb7cba3d0b703d69fbfaeeb32d8210342731ed078a5c040f4d05c7e2fc28
MD5 268a56ee3b461a894ac3bdae286a19d4
BLAKE2b-256 a268b2a09fee88f304c4c8290348eb4d3ae5b00da3b6caa68fb6beec3cee5c82

See more details on using hashes here.

File details

Details for the file lets_plot-4.5.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.5.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9837567b603e313b5db00de370258752298e2cbe9ac0b10739c1124c3b65ccf5
MD5 2947c74c29279e2c8b80247fdff7959b
BLAKE2b-256 03d92ad1d87afdde157d5c63d37726c8ff57e00687ce8bf3792a2068d837d248

See more details on using hashes here.

File details

Details for the file lets_plot-4.5.2-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-4.5.2-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9aa6483595d8c6b82e7ac587beb4198210b2241880b860f43ecfebf2a981518a
MD5 efc9fb3305a80563478f4f294bbaa42c
BLAKE2b-256 cf506de9e59b24b50913aedc4fa916b37c3b9bff0707d675f0b2e17529afbf4c

See more details on using hashes here.

File details

Details for the file lets_plot-4.5.2-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.5.2-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 56f9953a6ff2d9e96d24e3e8e4bf6eb59c49697b5d9b1c460e79a7ff4a138517
MD5 8d0a7a2087b0bcafc3db3d016c1e4862
BLAKE2b-256 75cc807aee83f0ef3f495dfe3a146675581efc99f52c5e2e97872bba7f61c150

See more details on using hashes here.

File details

Details for the file lets_plot-4.5.2-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: lets_plot-4.5.2-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for lets_plot-4.5.2-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 8c9de3d8d873a3af2cf3a6eb2212b02f4f4aa203eaf9c5f6134e7823d3d600ea
MD5 ecbf7a0722ed044e0ff45662e924afb6
BLAKE2b-256 5c1584c8053ffd85ff4f32ba17e664341eff32bf14e4c91790db181088bd6cb9

See more details on using hashes here.

File details

Details for the file lets_plot-4.5.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.5.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 14db9a9eef9fb903d75c6691ea4ee0e27c9c1c2dc8096b31fb176a31ce03ffe0
MD5 f157a06216930264dd38f910bfc8bb9c
BLAKE2b-256 ef668bebe37c2ddd8538c69fbd64868275b697d2e58ac5c5f0da38bef4b4a0ce

See more details on using hashes here.

File details

Details for the file lets_plot-4.5.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.5.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 1dfce463e17c122e1d24985ef76bad6ce91df8d41003559f9dd4181fb3148e0b
MD5 39742f127f00ab4d4ba9e3a34bff0de3
BLAKE2b-256 af8f8cd907b33d0b06bf8cf6c8312643d2dee80123beb91a3b7afb593da2561c

See more details on using hashes here.

File details

Details for the file lets_plot-4.5.2-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-4.5.2-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2b04abcc1d8e05d7d1a01f3f319d6b5c50b5c37e58b9215ead736df6baa143a9
MD5 dce757af3266eb57e1133c4c0f7c207d
BLAKE2b-256 f87cc2e7cfbc4b306a490adb87ce99e3d46c932e5a6d5fa19d1e5eea1bf506b6

See more details on using hashes here.

File details

Details for the file lets_plot-4.5.2-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.5.2-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 89e4e3573c56bac69a7885ac86758c3f60a2bd3a410722c3b0b68b09a450ff73
MD5 5f8ccc036f64aaaf3c4b569a05cf2049
BLAKE2b-256 72177a65bc76a0e998d16ec9f71f5ccbc0a4049ac9195828bcfd59ed0b541ff7

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page