Skip to main content

An open source library for statistical plotting

Project description

Lets-Plot

official JetBrains project License MIT Latest Release

Lets-Plot is a multiplatform plotting library built on the principles of the Grammar of Graphics.

The library' design is heavily influenced by Leland Wilkinson work The Grammar of Graphics describing the deep features that underlie all statistical graphics.

This grammar [...] is made up of a set of independent components that can be composed in many different ways. This makes [it] very powerful because you are not limited to a set of pre-specified graphics, but you can create new graphics that are precisely tailored for your problem.

Grammar of Graphics for Python Latest Release

A bridge between R (ggplot2) and Python data visualization.
To learn more see the documentation site at lets-plot.org.

Grammar of Graphics for Kotlin Latest Release

Notebooks

Create plots in Kotlin Notebook, Datalore, Jupyter with Kotlin Kernel
or any other notebook that supports Kotlin Kernel.
To learn more see the Lets-Plot Kotlin API project at GitHub.

Compose Multiplatform

Embed Lets-Plot charts in Compose Multiplatform applications.
To learn more see the Lets-Plot Skia Frontend project at GitHub.

JVM and Kotlin/JS

Embed Lets-Plot charts in JVM (Swing, JavaFX) and Kotlin/JS applications.
To learn more see the Lets-Plot Kotlin API project at GitHub.

"Lets-Plot in SciView" plugin

JetBrains Plugins JetBrains plugins

Scientific mode in PyCharm and in IntelliJ IDEA provides support for interactive scientific computing and data visualization.

Lets-Plot in SciView plugin adds support for interactive plotting to IntelliJ-based IDEs with the Scientific mode enabled.

Note: The Scientific mode is NOT available in communinty editions of JetBrains IDEs.

Also read:

What is new in 4.6.0

Recent Updates in the Gallery

f-24e/images/us_unemployment.png f-24b/images/gal_venn_diagram.png f-24b/images/gal_spoke.png f-24b/images/gal_indonesia_volcanoes_on_map.png f-24b/images/gal_japanese_volcanoes_on_map.png f-24a/images/gal_bbc_cookbook.png f-24a/images/gal_penguins.png f-24a/images/gal_periodic_table.png f-24a/images/gal_wind_rose.png f-24a/images/gal_polar_heatmap.png

Change Log

CHANGELOG.md

Code of Conduct

This project and the corresponding community are governed by the JetBrains Open Source and Community Code of Conduct. Please make sure you read it.

License

Code and documentation released under the MIT license. Copyright © 2019-2025, JetBrains s.r.o.

Project details


Release history Release notifications | RSS feed

This version

4.6.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

lets_plot-4.6.0-cp313-cp313-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.13Windows x86-64

lets_plot-4.6.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64

lets_plot-4.6.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.4 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ ARM64

lets_plot-4.6.0-cp313-cp313-macosx_11_0_arm64.whl (3.2 MB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

lets_plot-4.6.0-cp313-cp313-macosx_10_15_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.13macOS 10.15+ x86-64

lets_plot-4.6.0-cp312-cp312-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.12Windows x86-64

lets_plot-4.6.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

lets_plot-4.6.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.4 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ARM64

lets_plot-4.6.0-cp312-cp312-macosx_11_0_arm64.whl (3.2 MB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

lets_plot-4.6.0-cp312-cp312-macosx_10_15_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.12macOS 10.15+ x86-64

lets_plot-4.6.0-cp311-cp311-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.11Windows x86-64

lets_plot-4.6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

lets_plot-4.6.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.4 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

lets_plot-4.6.0-cp311-cp311-macosx_11_0_arm64.whl (3.2 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

lets_plot-4.6.0-cp311-cp311-macosx_10_15_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.11macOS 10.15+ x86-64

lets_plot-4.6.0-cp310-cp310-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.10Windows x86-64

lets_plot-4.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

lets_plot-4.6.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.4 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

lets_plot-4.6.0-cp310-cp310-macosx_11_0_arm64.whl (3.2 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

lets_plot-4.6.0-cp310-cp310-macosx_10_15_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.10macOS 10.15+ x86-64

lets_plot-4.6.0-cp39-cp39-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.9Windows x86-64

lets_plot-4.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

lets_plot-4.6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.4 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

lets_plot-4.6.0-cp39-cp39-macosx_11_0_arm64.whl (3.2 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

lets_plot-4.6.0-cp39-cp39-macosx_10_15_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.9macOS 10.15+ x86-64

lets_plot-4.6.0-cp38-cp38-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.8Windows x86-64

lets_plot-4.6.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

lets_plot-4.6.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.4 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ARM64

lets_plot-4.6.0-cp38-cp38-macosx_11_0_arm64.whl (3.2 MB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

lets_plot-4.6.0-cp38-cp38-macosx_10_15_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.8macOS 10.15+ x86-64

File details

Details for the file lets_plot-4.6.0-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: lets_plot-4.6.0-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for lets_plot-4.6.0-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 7e2227757288dfbc6e4710f80e9c24438028c3d1a7ec9970b292efb7e91fea9c
MD5 b495f6a9f3089dd02a8077ebeabd14be
BLAKE2b-256 7b6067c00c7e2fd8b80eadef6aaa40322c076c59ae8b5b8f926376ac01d974d3

See more details on using hashes here.

File details

Details for the file lets_plot-4.6.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.6.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f2c7f1d89077f223e19f4fe4d4291187a1bf1512e2162530b5403f6b20b28b0e
MD5 dc2501e866cc2819fdd2c90ec38a252b
BLAKE2b-256 3c67fa0b312eccd0157c69c6f1bbddcd6ea9d04e87c585a4669b6b6967b4ed19

See more details on using hashes here.

File details

Details for the file lets_plot-4.6.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.6.0-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d0528782fd1fef85ba135497a5c346312cd5d9bd1a76a2f1fbe772ff49024bbe
MD5 d8bdcfd8b881f0db63a0e3db0a80ae2d
BLAKE2b-256 685bd91df3f0753914816fb1d6e84977cb7d5d115cd5772d3c434f8dc50b5617

See more details on using hashes here.

File details

Details for the file lets_plot-4.6.0-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-4.6.0-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2b1df47449bc74ab185d2c6e2bee0982dae2bc0b33320782805da39fca0ec330
MD5 e3792c461bac3dd2020a65e07f308fad
BLAKE2b-256 ba04164d4c5443c721bbfd765a0bf860248c30358600ecd1ddc8a3186b507ede

See more details on using hashes here.

File details

Details for the file lets_plot-4.6.0-cp313-cp313-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.6.0-cp313-cp313-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 c5e223d16a6095ea84048a35bbe749370a9c036759ea59dc49738df8c453f6b0
MD5 483f433113a673a609fa7726c8c093ab
BLAKE2b-256 af1e272d4eb79526a8eb7183d58c7e86ffba1e19fcf40460aade44b44fb33fc7

See more details on using hashes here.

File details

Details for the file lets_plot-4.6.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: lets_plot-4.6.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for lets_plot-4.6.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 381f467306273c6939939d325458c4a35af264cea575a199f0f871d70349886f
MD5 f8a02551946022a00a6f44e227594dfb
BLAKE2b-256 c8ea5b02a3504acce75198838e1def934da178844c88e898f2401760d498e435

See more details on using hashes here.

File details

Details for the file lets_plot-4.6.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.6.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3874e2a419eb8125614d28667b3ef93b48cb47c6cdfa3989d4ea23d6159802d7
MD5 fec284fbff5f3fc750517445e15737c0
BLAKE2b-256 7803a1a8fc4a2455518b4c00ffcb787686ab851b2f6783b547ee69be51638485

See more details on using hashes here.

File details

Details for the file lets_plot-4.6.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.6.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9bdb7e72247445f827c7b93580253db7c4cee17e8163741dae7f25c1ae3ee38e
MD5 267d19d628d4545c696c672ba344e8cf
BLAKE2b-256 27dbe0761d4eb5d375366d5dc25c82799aa256f33792e19b4278f4c9342d8003

See more details on using hashes here.

File details

Details for the file lets_plot-4.6.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-4.6.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7bb82c74d7cf2f4b3c2f06ce33b324556dd34e1ef114d54c77ed2ce5ac8a57eb
MD5 8616a60bf92503114ddefab4eb16f30a
BLAKE2b-256 6e3609654c1a2770fd253cb2edea88d70868d063a85728182fac01dec5d78791

See more details on using hashes here.

File details

Details for the file lets_plot-4.6.0-cp312-cp312-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.6.0-cp312-cp312-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 bce0ace7e0f7cd63900ccb15523c4189fc31976f8611010033fd460acdf9e8f8
MD5 70cdcac92a9ccbf7a67ffd7a61b78b0c
BLAKE2b-256 3fc900e18b65dc8663013d76a3f15549e7929962e844c34b67f81d27166daa05

See more details on using hashes here.

File details

Details for the file lets_plot-4.6.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: lets_plot-4.6.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for lets_plot-4.6.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 0e1dec9a95224a27faf524777656e75ea6db77a4b6cb4ea84811cbe5e9712080
MD5 0b7c518c6c2043f352e99bcc46560968
BLAKE2b-256 b58e9509d337956d4debdd6749d508af0d993619f773a6b27199fa07c64c7558

See more details on using hashes here.

File details

Details for the file lets_plot-4.6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 17d5a521e17253dd47be38756402e4ca76b77eba969fbdfe53f9d6f0500a9e78
MD5 8d2b5c018c4599664fb76e0e1b085a6a
BLAKE2b-256 a934ab4b966b2a9976b7ebe52a6f0cf26cbae203377400bdd0e6551744f83308

See more details on using hashes here.

File details

Details for the file lets_plot-4.6.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.6.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 0d1bcc3ceecbd04cab22468717cb97a6c53c31a61f77d3a6c149e3caadf9a533
MD5 73b7463c5bf2b20cff3080adee82e50b
BLAKE2b-256 c617dac49e4ef50b17aa6786a4112d12991f81770c15f1e3677ceba46856955f

See more details on using hashes here.

File details

Details for the file lets_plot-4.6.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-4.6.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fc7cb56c4dd43ffa0dcf5026915ab59c09707b6dbd86d35cf7312dc16bee383a
MD5 064dd3464c5de2b1cef5ce7bd2d1c147
BLAKE2b-256 be1396ce784251882f3702ba07fd3d45f2cc5bbb11c36f1608a02dd25984b28f

See more details on using hashes here.

File details

Details for the file lets_plot-4.6.0-cp311-cp311-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.6.0-cp311-cp311-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 6eb8cb69b823339daf1c42dfcea3dfc551f0f3f98a52b4c81dc83005f8189e64
MD5 f4d11574bd01bdc1a2491bff4df0ff8b
BLAKE2b-256 fabaf86bc9bd4e8e1c56993ec0f8676876b4726b9c32e1b65f054d5f239c3063

See more details on using hashes here.

File details

Details for the file lets_plot-4.6.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: lets_plot-4.6.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for lets_plot-4.6.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 fc7c7e63e268a118d82b8c97447b5ba05ceb5a0d14c5c8c1c842864765a30be4
MD5 2978ecce6ed0f9be950c4480e70b30fb
BLAKE2b-256 7773cffcb4b72b3b593a86eba8250fcbb63bcbe4ec2dc148660ba85c17011cd2

See more details on using hashes here.

File details

Details for the file lets_plot-4.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 103d14c6a7a6558e04be8b6d019601ac60069617eb617129d34df9eb4a46efdb
MD5 0830897ad427a7b9594f871ca72ad650
BLAKE2b-256 e9d9aba06a366fe2cf7c2e4768cbb9e13254fdbd817ac3c121dd477674ac365e

See more details on using hashes here.

File details

Details for the file lets_plot-4.6.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.6.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 498975dce02f3dc0a8f7cdccae15280ec29107fd94154f1f14d3145fa53fdfb9
MD5 e2a9bedbeac841f9fd5ef630dcdcdd96
BLAKE2b-256 8aa40760d28a4f4c3d51a699c5b9115d1247e167f70728469046c1268c7fdfe5

See more details on using hashes here.

File details

Details for the file lets_plot-4.6.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-4.6.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 1e49f6773917c32442d27531e86e5287292b235b201d6986ac1ff96cf49ac57c
MD5 81dbef82766e6c3c6bb2634f79fd08a6
BLAKE2b-256 69878cdeaf29eac47d33576a3b3ecb7a233c0cbf5ed644dbe015f5c17f2fe7f5

See more details on using hashes here.

File details

Details for the file lets_plot-4.6.0-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.6.0-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 199914b5e72cdf2a128ad163b2eb66a327abfa9d1a95d6acfb2d60bd18ddd2c0
MD5 1e721182d2c34203a2a23bd0cb5e8e23
BLAKE2b-256 28d1026acb57a4288a11440c0158cee613015504c1f958ca713233e206edcdd5

See more details on using hashes here.

File details

Details for the file lets_plot-4.6.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: lets_plot-4.6.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for lets_plot-4.6.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 aaed19d67579bc2e4f3daa9b03530426787819abb69fb7173d4025922789e5fe
MD5 a75430d4a37cc5ec5323e21590f6c638
BLAKE2b-256 fd8c476d0527c742a6ea9f37c11dfb0c823dd29ecaa439d5faf8f54bd4291526

See more details on using hashes here.

File details

Details for the file lets_plot-4.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f400762288af5f265141042c26a4aca0190d0ab7c1a176cb3770680804829f83
MD5 3e3908bc3f50bee79bef768a9e6ebf3c
BLAKE2b-256 7a8d554f2131f8168fccdbb054f676252f8b1d981a68a85e75368ecf645fa85e

See more details on using hashes here.

File details

Details for the file lets_plot-4.6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.6.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 58cd4c4dda2b79eb52c2303fb6b025355ed3525e04649a0707772b01df1d2d22
MD5 7ac526b5ab2c0c57112db771c492c74d
BLAKE2b-256 944e5217fbeeb06da4fc6e42870d3726fd26390001691233a09f48e2e0d7a0b8

See more details on using hashes here.

File details

Details for the file lets_plot-4.6.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-4.6.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7215efa3d13645e8bb7a4ba33a8a188d47efbf96342be0d0be9f15e2459a7525
MD5 2f3b00e55293de7df193b5963a961dff
BLAKE2b-256 22f0f1a9e9cc8a5401d5b31093d8bfd3bf0195f717eb4ccfce09932ed1dd4493

See more details on using hashes here.

File details

Details for the file lets_plot-4.6.0-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.6.0-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 5d3ff5ba82c27653cc034708778205f212df6e5d7c5ce7d5883ff3315fc9c41d
MD5 d692565521c287a3f14852562f8db8cc
BLAKE2b-256 bd56a3c827485a9994789075430a95a8a34e3e81678f4d4bb78d897a2153aba0

See more details on using hashes here.

File details

Details for the file lets_plot-4.6.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: lets_plot-4.6.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for lets_plot-4.6.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 f404902dac9487046a43eb6a3748488dc57f63096e56d0e0e761636f730e3ee8
MD5 543f8710c072d47ed62e0306228cb0a4
BLAKE2b-256 a178be88832b19bd900ecbeb72aa2cd304c5cc0624b2e7a002a0a51cfd884962

See more details on using hashes here.

File details

Details for the file lets_plot-4.6.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.6.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f79cfb7752510afc129cc94c4b365c7fd4de1f661c9cb3afe24838df4a304357
MD5 9f730dcd27d20fb3d24f3c815422637c
BLAKE2b-256 0f5ab06941c31642d0fa4a6c9cc3faadf5564f0159b003206b00679d60708520

See more details on using hashes here.

File details

Details for the file lets_plot-4.6.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.6.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d6296d97ff4abe0eee90a6227e822e040397577ea4a45abb5261d19a86f74e8c
MD5 5f90a9791714c2cde4a40514d8563977
BLAKE2b-256 a43d800947a31f9e2d9d3648d462c9dbf7abac60df5ba6331767826478734c22

See more details on using hashes here.

File details

Details for the file lets_plot-4.6.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-4.6.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 bf6992c47911bcefc4c11cd0c061dd7540fc0610daba353490ccceb2798cc98c
MD5 1ad13f98bd06bfcdc6d06b4eec69e7fe
BLAKE2b-256 600df43e49fb7909df360bc2a643788738ddf40d371ada14813aec5e096f42a8

See more details on using hashes here.

File details

Details for the file lets_plot-4.6.0-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.6.0-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 4c286e77a4374f8e74afe0173d47f3e0d86e8d4c58596c2ebb622143b2ad932a
MD5 3eb8a42076b411fe814b5f570610a791
BLAKE2b-256 a4cecfab3cb1546138bd1ed6b76562352267b6757d0d77c19e1dbc343bb9cfda

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page