Skip to main content

An open source library for statistical plotting

Project description

Lets-Plot

official JetBrains project License MIT Latest Release

Lets-Plot is a multiplatform plotting library built on the principles of the Grammar of Graphics.

The library' design is heavily influenced by Leland Wilkinson work The Grammar of Graphics describing the deep features that underlie all statistical graphics.

This grammar [...] is made up of a set of independent components that can be composed in many different ways. This makes [it] very powerful because you are not limited to a set of pre-specified graphics, but you can create new graphics that are precisely tailored for your problem.

Grammar of Graphics for Python Latest Release

A bridge between R (ggplot2) and Python data visualization.
To learn more see the documentation site at lets-plot.org.

Grammar of Graphics for Kotlin Latest Release

Notebooks

Create plots in Kotlin Notebook, Datalore, Jupyter with Kotlin Kernel
or any other notebook that supports Kotlin Kernel.
To learn more see the Lets-Plot Kotlin API project at GitHub.

Compose Multiplatform

Embed Lets-Plot charts in Compose Multiplatform applications.
To learn more see the Lets-Plot Skia Frontend project at GitHub.

JVM and Kotlin/JS

Embed Lets-Plot charts in JVM (Swing, JavaFX) and Kotlin/JS applications.
To learn more see the Lets-Plot Kotlin API project at GitHub.

"Lets-Plot in SciView" plugin

JetBrains Plugins JetBrains plugins

Scientific mode in PyCharm and in IntelliJ IDEA provides support for interactive scientific computing and data visualization.

Lets-Plot in SciView plugin adds support for interactive plotting to IntelliJ-based IDEs with the Scientific mode enabled.

Note: The Scientific mode is NOT available in communinty editions of JetBrains IDEs.

Also read:

What is new in 4.6.0

Recent Updates in the Gallery

f-24e/images/us_unemployment.png f-24b/images/gal_venn_diagram.png f-24b/images/gal_spoke.png f-24b/images/gal_indonesia_volcanoes_on_map.png f-24b/images/gal_japanese_volcanoes_on_map.png f-24a/images/gal_bbc_cookbook.png f-24a/images/gal_penguins.png f-24a/images/gal_periodic_table.png f-24a/images/gal_wind_rose.png f-24a/images/gal_polar_heatmap.png

Change Log

CHANGELOG.md

Code of Conduct

This project and the corresponding community are governed by the JetBrains Open Source and Community Code of Conduct. Please make sure you read it.

License

Code and documentation released under the MIT license. Copyright © 2019-2025, JetBrains s.r.o.

Project details


Release history Release notifications | RSS feed

This version

4.6.1

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

lets_plot-4.6.1-cp313-cp313-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.13Windows x86-64

lets_plot-4.6.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ x86-64

lets_plot-4.6.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.4 MB view details)

Uploaded CPython 3.13manylinux: glibc 2.17+ ARM64

lets_plot-4.6.1-cp313-cp313-macosx_11_0_arm64.whl (3.2 MB view details)

Uploaded CPython 3.13macOS 11.0+ ARM64

lets_plot-4.6.1-cp313-cp313-macosx_10_15_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.13macOS 10.15+ x86-64

lets_plot-4.6.1-cp312-cp312-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.12Windows x86-64

lets_plot-4.6.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ x86-64

lets_plot-4.6.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.4 MB view details)

Uploaded CPython 3.12manylinux: glibc 2.17+ ARM64

lets_plot-4.6.1-cp312-cp312-macosx_11_0_arm64.whl (3.2 MB view details)

Uploaded CPython 3.12macOS 11.0+ ARM64

lets_plot-4.6.1-cp312-cp312-macosx_10_15_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.12macOS 10.15+ x86-64

lets_plot-4.6.1-cp311-cp311-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.11Windows x86-64

lets_plot-4.6.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ x86-64

lets_plot-4.6.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.4 MB view details)

Uploaded CPython 3.11manylinux: glibc 2.17+ ARM64

lets_plot-4.6.1-cp311-cp311-macosx_11_0_arm64.whl (3.2 MB view details)

Uploaded CPython 3.11macOS 11.0+ ARM64

lets_plot-4.6.1-cp311-cp311-macosx_10_15_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.11macOS 10.15+ x86-64

lets_plot-4.6.1-cp310-cp310-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.10Windows x86-64

lets_plot-4.6.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ x86-64

lets_plot-4.6.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.4 MB view details)

Uploaded CPython 3.10manylinux: glibc 2.17+ ARM64

lets_plot-4.6.1-cp310-cp310-macosx_11_0_arm64.whl (3.2 MB view details)

Uploaded CPython 3.10macOS 11.0+ ARM64

lets_plot-4.6.1-cp310-cp310-macosx_10_15_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.10macOS 10.15+ x86-64

lets_plot-4.6.1-cp39-cp39-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.9Windows x86-64

lets_plot-4.6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ x86-64

lets_plot-4.6.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.4 MB view details)

Uploaded CPython 3.9manylinux: glibc 2.17+ ARM64

lets_plot-4.6.1-cp39-cp39-macosx_11_0_arm64.whl (3.2 MB view details)

Uploaded CPython 3.9macOS 11.0+ ARM64

lets_plot-4.6.1-cp39-cp39-macosx_10_15_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.9macOS 10.15+ x86-64

lets_plot-4.6.1-cp38-cp38-win_amd64.whl (3.1 MB view details)

Uploaded CPython 3.8Windows x86-64

lets_plot-4.6.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ x86-64

lets_plot-4.6.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.4 MB view details)

Uploaded CPython 3.8manylinux: glibc 2.17+ ARM64

lets_plot-4.6.1-cp38-cp38-macosx_11_0_arm64.whl (3.2 MB view details)

Uploaded CPython 3.8macOS 11.0+ ARM64

lets_plot-4.6.1-cp38-cp38-macosx_10_15_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.8macOS 10.15+ x86-64

File details

Details for the file lets_plot-4.6.1-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: lets_plot-4.6.1-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for lets_plot-4.6.1-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 cfbbb88caf1c63b5087326645e624c5dff2818c5645241e3551f82365c0c1abf
MD5 4018aa7c1924ebc339becc72d3888822
BLAKE2b-256 908b3697cdd42d8a20af48c3fd618e78c8dfcdc760c229f2f02b787d3d4d290e

See more details on using hashes here.

File details

Details for the file lets_plot-4.6.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.6.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2d212fc9e0a111b47a5e9dc20b06c0a10de7fe8919fb229b56c84e59e4bb3c5e
MD5 f6fc5237adb826248931983c11cfdbcb
BLAKE2b-256 3e8144d9833ef6c5a7efcdf1b63d1fbfb1d536e2fb6c06eb92d7f2d7710da3d3

See more details on using hashes here.

File details

Details for the file lets_plot-4.6.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.6.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 51d8a099dc2da453df77976f1c7a5877f1c5ab0adf1e89bdeb2c4792d496e270
MD5 0bb8f03f2930d90fbe095b4b71315a6f
BLAKE2b-256 d3990b00680bafd4f473370b8cadf0ffaf9b6802134344b77dd08b8b18aa31a6

See more details on using hashes here.

File details

Details for the file lets_plot-4.6.1-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-4.6.1-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b89712054e73d1dd1b532436fc6033dd9cb62d9dcfc6d54ca99e0b8352e07e6b
MD5 168dc121dcf00e9c687712d83c4919e8
BLAKE2b-256 615e76dc2c7c84e55d9cc7d4a16dc860945dcb73aecbe2dabc3df12a04746ee3

See more details on using hashes here.

File details

Details for the file lets_plot-4.6.1-cp313-cp313-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.6.1-cp313-cp313-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 b6be3a50a9aa238e48b4dfa47cfe4fef82feb6413d343c7b3bb3ae6b5d89d0cd
MD5 be51c888e2d3c85ca57128686db878f3
BLAKE2b-256 3f4b3845838a9556944d9f799e41162dff294e0ee86d2b71d397804366cea1f3

See more details on using hashes here.

File details

Details for the file lets_plot-4.6.1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: lets_plot-4.6.1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for lets_plot-4.6.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 815a4530ab7cec15df861bdf25b6fdd91420f263e898c569db5bd9cf10b8ba38
MD5 8b1553a63245c0c421cc2a423021ff89
BLAKE2b-256 dcf4a12ee32e76b86535275a4f2e7bae6e1348134973729bfdd17d9a7b92a83d

See more details on using hashes here.

File details

Details for the file lets_plot-4.6.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.6.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ad9b6fcc6c93a716dba58e15a8e370dd1e667101113aacc1099df0245f283660
MD5 4632a9cf74873727573eaea63614f392
BLAKE2b-256 ced45ac9bb7b79d57a82d9e21741776385d958601a03647696f3c225c92a5e2d

See more details on using hashes here.

File details

Details for the file lets_plot-4.6.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.6.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bd51f9001eb519af6864a0e12a61f75cb90cea5935719755265692151b885f52
MD5 f0944c936868b64283ebd7b58d87fcdc
BLAKE2b-256 c14f39641a623dfd34d081d29dbdc9548d432e9570c5dafb2fe5b27dcb4ea036

See more details on using hashes here.

File details

Details for the file lets_plot-4.6.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-4.6.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 acfb0e357a43ca33a4878ca4a40c1f9d09d14353a9860fda239c34d91103c758
MD5 6ba38dc76c43b530e9966e1d0fabf6f5
BLAKE2b-256 3edfd9337864601c8374e3bf63d20e12774d7c9fae1de707d23e34926b828088

See more details on using hashes here.

File details

Details for the file lets_plot-4.6.1-cp312-cp312-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.6.1-cp312-cp312-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 3b619e170ee86b35a799746d5ee226ef7cfbecb3ffefc4ae63704ae5f11a0746
MD5 0363cfa96ea04607fcc145317fa461fd
BLAKE2b-256 e248fa5e5ba5734909a938a154cd52d612a41900b03b2a3e2d9052cc9830b36e

See more details on using hashes here.

File details

Details for the file lets_plot-4.6.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: lets_plot-4.6.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for lets_plot-4.6.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 110be29b3f605cd6eb5cc86bb3e2da70c52056d933d0273f279395b07d332203
MD5 a6f6e6d71f36c09bce8fa5e8141f4ab4
BLAKE2b-256 15321b23092b42a46d76b3839251a9497f1136fc021cbfb6148eefbb3554f137

See more details on using hashes here.

File details

Details for the file lets_plot-4.6.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.6.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6655160672750a37e9a8a08b51c0895bf2724ceb5c8b62c88608a88a07b87d78
MD5 8da35b91545f0ea6a77410220704354d
BLAKE2b-256 8ae6e32b4b9cc24ed056594e955e7c7fe57ab1dd9dc657ba3004fffd9ebb58b9

See more details on using hashes here.

File details

Details for the file lets_plot-4.6.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.6.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f1a179384cef58288e1408473bd0338212c4f65b8e1ea2967a2358a73ad658a5
MD5 bf46a2823bf4314be05785ff265f3406
BLAKE2b-256 8652abe9e3ff3951b5212f9d00a3b56a00eecc137c40a16c3825e0c525d0b643

See more details on using hashes here.

File details

Details for the file lets_plot-4.6.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-4.6.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2bc97b602710899beb7d42f0dcff504e88aa0ebfee878483943f75d96de3bac3
MD5 53cd56f145034987009a60c12be16d6c
BLAKE2b-256 1feedbf5bf896d3377e5913069b7045c2abf04fc954d208ec3d27655d40c8fc3

See more details on using hashes here.

File details

Details for the file lets_plot-4.6.1-cp311-cp311-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.6.1-cp311-cp311-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 81b4b03f8ac4fc2ddf546b6875b0656e98a0128df90b47f7192c8ce13cceffd5
MD5 685a1635b2c153bde10d331341e2ab35
BLAKE2b-256 1e3acaa3db5b3bc1f89201cd027708d49dd45d03679ced259ca90d42f24814af

See more details on using hashes here.

File details

Details for the file lets_plot-4.6.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: lets_plot-4.6.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for lets_plot-4.6.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 0da1fb283e186f6a616e80b7ab95ecdb8da614c2761e8e8452661021730f676a
MD5 52af9bba9418dfcc6a7e2c048924ca43
BLAKE2b-256 6329c264facfa099a1a8f2e9912c3d097cfa8bf6589b706ee19c142558ea51af

See more details on using hashes here.

File details

Details for the file lets_plot-4.6.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.6.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 526820d7e74acecca60a2ce4cc9d818cbff23e342fe26757567281b2d478e7a6
MD5 da1d2a9ac4ffc9445d27abbd0bd16a38
BLAKE2b-256 c9f5c67ef25933b6e1f52c00cbba36d9bb433be126514ad8694fb8497d4cbf92

See more details on using hashes here.

File details

Details for the file lets_plot-4.6.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.6.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cb5e8fb363038e0178372f4b228933a290e4964540e87f313540e7aeb3f28212
MD5 c8f5de1e0aa7bac2cd852eadeb9d5af4
BLAKE2b-256 fafae31376d074888030cde453e25f95e82e5fcb1064d4d3dd3dfa80bdcce25d

See more details on using hashes here.

File details

Details for the file lets_plot-4.6.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-4.6.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2302761b9b3676a186bb084b2faf28f5939596f424baf2dab3c351d0144ba9ab
MD5 a6c6f9b732ec28d69577a7c00b0c10d4
BLAKE2b-256 24ede2d94db21457df3491bb7601bd6314115bad14fd52bebf219942fe58f7f5

See more details on using hashes here.

File details

Details for the file lets_plot-4.6.1-cp310-cp310-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.6.1-cp310-cp310-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 54ff5b65293ef3243028e4ef1e1ba40fe310782eb50db3a7f5010856bcd037b6
MD5 69265079e3a80512f1253d277bc673e8
BLAKE2b-256 c9ccb2ae70899e6b43c6a91e1197b1abb524e261e57264e305016018be2579d0

See more details on using hashes here.

File details

Details for the file lets_plot-4.6.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: lets_plot-4.6.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for lets_plot-4.6.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 7614f0fcbb46b6a84978e3d628529ed9833075ca74ebb94c2cd77871bf6bdb5f
MD5 8f54f56a409304892eb851b732467bf1
BLAKE2b-256 d127a95a3c1e52d7fcb78cb78fb4513806548fc2025de489713928b4b01981b8

See more details on using hashes here.

File details

Details for the file lets_plot-4.6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 687d58e97271df7e958d28cdca49ddcf19691b44f67a6d2f59645d0be9b4a938
MD5 41d5de728a43d08368a4d220a83151e9
BLAKE2b-256 367ac1239ca61494dd6e862ef76620acc36b1697f37b7f22626d91481e9e56ba

See more details on using hashes here.

File details

Details for the file lets_plot-4.6.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.6.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 840b10340a07016359c8304f56c5750cc8a6c962a4d280d352162e1718e11a33
MD5 544ba92474164c7bc1d9553289127096
BLAKE2b-256 add7bd08973e816781162fcedfed65bbeb0fb1af240361a9bdcc64152f30bb95

See more details on using hashes here.

File details

Details for the file lets_plot-4.6.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-4.6.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3d3b9140536d7aa9bf917a6b6995a90a1fc513bdf876351d8b5549874fbc0f07
MD5 a5811b3a6abfc78bc1491d95f1d7e787
BLAKE2b-256 28abbf3f10e368046a00c0ff9551e3422c1ebda32ec91d35d61633d08350f4f7

See more details on using hashes here.

File details

Details for the file lets_plot-4.6.1-cp39-cp39-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.6.1-cp39-cp39-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 66ac8025b608ae25a195b45b7378be2b2cf0f95812e9a9dfc444c4dd46462099
MD5 b9ec2a24becf5214d01f40ded42e5691
BLAKE2b-256 abcf0606d1ea452fbe37a8bbcd01468b9e291c187d8d38bcb0101e8557c915b7

See more details on using hashes here.

File details

Details for the file lets_plot-4.6.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: lets_plot-4.6.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 3.1 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.12

File hashes

Hashes for lets_plot-4.6.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 079020458f2131e68382c478268476779f72ed48ee970cf59dcf9720b097e031
MD5 6ced0ff8fef24669c555b4683dcddae5
BLAKE2b-256 4dd703f429f67f99ada0c4eb1c1572b894aaf70ac60a257e2403705fd82c45fe

See more details on using hashes here.

File details

Details for the file lets_plot-4.6.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.6.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8e8a6594c2532123e6933bc3ede37c7b0c52b0909214588b1a6c858faff5edfb
MD5 d7101604374a3c931b0e60ee366d69d5
BLAKE2b-256 8ee97cbdd493fa490d94e709d0a39383bca5a21fe7d37ed9040cfa0385d1700a

See more details on using hashes here.

File details

Details for the file lets_plot-4.6.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lets_plot-4.6.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bf4630bde4162f9dbb630c2c58a6a587a5586327b7f797334fb7f0d151981b8d
MD5 070faecdf95a9980056d7d50fb80e68a
BLAKE2b-256 7acd7f07980d93b982a42c42a7078097a484ed109fbb7d1d9fc77ec9ae377f2f

See more details on using hashes here.

File details

Details for the file lets_plot-4.6.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for lets_plot-4.6.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 03cc0b8daf89fb807418c393c6a53d9bf3d84c4145bbe16e65dedd98cd2e1748
MD5 0dbc93538d929ab3db3e6785df4b4904
BLAKE2b-256 d6dd23107a0bdda8c1ae19aa467a262c95e3b07c72e33152d9a1f4c819a614e6

See more details on using hashes here.

File details

Details for the file lets_plot-4.6.1-cp38-cp38-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for lets_plot-4.6.1-cp38-cp38-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 924de6c3029f6e63008089b3f536737b7d1a92e90c5ee2d6aa99eb8513d0a79c
MD5 f87ed4f8efe76f240e9507159f03c761
BLAKE2b-256 bfab001899fa58fda813511e9a6aab9843a0ead6f0d437a15e2f874867f806d7

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page