a module to support lexisnexis api(s)
Project description
Metabase.py Documentation
1. Introduction
Overview
The metabase.py
module provides a Python interface to interact with the Metabase API. It allows you to perform searches and retrieve articles using the Metabase API. The module facilitates the creation of Python objects representing the API response, making it easy to work with the data.
Authors
- Robert Cuffney
- Ozgur Aycan
- CS Integration Consultants @ LexisNexis
Version
Current version: 3.0.3.12
2. Installation
Dependencies
To use the metabase.py
module, you need the following dependencies:
- requests
- json
- pandas
- datetime
- lexisnexisapi
Installation
You can install the required dependencies using pip:
pip install requests pandas lexisnexisapi
3. Usage
Importing the Module
To use the metabase.py
module in your Python script, import it as follows:
from lexisnexisapi import metabase
Search Class
The Search
class is the main interface to perform searches and retrieve articles from Metabase. It has the following attributes and methods:
Attributes:
parameters
: A dictionary of Metabase search parameters.articles
: A list containing the articles retrieved from the Metabase API response.totalResults
: The total number of articles available in the search results.
Methods:
__init__(self, full_dataset=False, **kwargs)
: Initializes the Search object and performs the API request. Iffull_dataset
is set toTrue
, it retrieves all available articles by making multiple API calls.articles_dataframe(self, *args)
: Returns a Pandas DataFrame containing the articles' data. You can pass a list of desired fields (*args
) to filter the DataFrame.create_file(self, file='articles.json')
: Creates a JSON file with the articles retrieved from the search.set_parameters(self, p)
: Sets the Metabase search parameters based on the input dictionaryp
.
Streamline Class
The Streamline
class helps maximize Metabase search calls without exceeding the rate limit. It keeps track of the remaining API calls per minute and waits for a new minute if needed.
Attributes:
key
: Metabase API key.start_minute
: The starting minute when the Streamline object is instantiated.minute_limit
: The maximum number of API calls allowed per minute based on the rate limit.calls_remaining
: The remaining API calls within the current minute.
Methods:
__init__(self, key)
: Initializes the Streamline object with the Metabase API key and fetches the rate limit information.track_calls(self)
: Updates the remaining API calls and waits for a new minute if the limit is reached.restart(self)
: Restarts the Streamline object.wait_for_new_min(self)
: Pauses execution until a new minute starts.get_current_minute(self)
: Returns the current minute as an integer.
Article Class
The Article
class represents an instance of a single article retrieved from Metabase. It sets each key from the article dictionary as an attribute of the class.
Helper Functions
The module also provides some helper functions:
http_request(p)
: Performs an HTTP request to the Metabase API with the given parametersp
and returns the API response as a dictionary.rate_check(mbkey)
: Calls the Metabase rate limit API and returns the results as a list of dictionaries.set_Metabase_Search_Key(v)
: Sets the Metabase search key in the credentials.get_time()
: Returns the current minute as an integer.
4. Examples
Basic Search Example
from lexisnexisapi import metabase
# Set the Metabase search key (optional, you can set it in the parameters directly)
metabase.set_mb_search_key("your_metabase_key")
# Perform a basic search
search = metabase.Search(query="your_query_here", limit=100)
# Get the DataFrame of articles
df = search.articles_dataframe("title", "author", "published_date")
print(df.head())
Full Dataset Search Example
from lexisnexisapi import metabase
# Set the Metabase search key (optional, you can set it in the parameters directly)
metabase.set_mb_search_key("your_metabase_key")
# Perform a full dataset search
search = metabase.Search(full_dataset=True, query="your_query_here")
# Create a JSON file with all the articles
search.create_file("articles_full.json")
Article Instance Example
from lexisnexisapi import metabase
# Set the Metabase search key (optional, you can set it in the parameters directly)
metabase.set_mb_search_key("your_metabase_key")
# Perform a search and get an article instance
search = metabase.Search(query="your_query_here", limit=1)
article_instance = metabase.Article(search.articles[0])
# Access attributes of the article instance
print(article_instance.title)
print(article_instance.author)
print(article_instance.published_date)
Index Terms Example
from lexisnexisapi import metabase
# Set the Metabase search key (optional, you can set it in the parameters directly)
metabase.set_mb_search_key("your_metabase_key")
# Perform a search
search = metabase.Search(query="your_query_here", limit=100)
# Get the DataFrame of index terms
index_terms_df = metabase.indexTerms(search, "economy", "politics", "technology")
print(index_terms_df.head())
Please note that you should replace your_metabase_key
and your_query_here
with your actual Metabase API key and desired search query, respectively, in the examples.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file lexisnexisapi-3.0.3.13.tar.gz
.
File metadata
- Download URL: lexisnexisapi-3.0.3.13.tar.gz
- Upload date:
- Size: 10.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6b8ba21481b39f99858858652465cb4045e3affda7dff03a0770bfe3e365f2aa |
|
MD5 | f838b2650130acce01b88da7f3f50ff0 |
|
BLAKE2b-256 | 3ab08abcfbc220978589ae36c2942a6873b8e969e6421a3702be76816991b7a2 |
File details
Details for the file lexisnexisapi-3.0.3.13-py3-none-any.whl
.
File metadata
- Download URL: lexisnexisapi-3.0.3.13-py3-none-any.whl
- Upload date:
- Size: 9.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.10.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d1b8a83902e0004b80235824fa6aea01429b9ccf20e66bed6e36a0060d8af0f2 |
|
MD5 | 2fe36339b84bac35fc7739aa812f18e2 |
|
BLAKE2b-256 | 8d309c2a43fb75667291ffd269e56081cab351d7c7ca82277b84755760a73c73 |