Skip to main content

Mage is a tool for building and deploying data pipelines.

Project description

Mage

🧙 A modern replacement for Airflow.

Documentation   🌪️    Get a 5 min overview   🌊    Play with live tool   🔥    Get instant help

Give your data team magical powers

Integrate and synchronize data from 3rd party sources

Build real-time and batch pipelines to transform data using Python, SQL, and R

Run, monitor, and orchestrate thousands of pipelines without losing sleep


1️⃣ 🏗️

Build

Have you met anyone who said they loved developing in Airflow?
That’s why we designed an easy developer experience that you’ll enjoy.

Easy developer experience
Start developing locally with a single command or launch a dev environment in your cloud using Terraform.

Language of choice
Write code in Python, SQL, or R in the same data pipeline for ultimate flexibility.

Engineering best practices built-in
Each step in your pipeline is a standalone file containing modular code that’s reusable and testable with data validations. No more DAGs with spaghetti code.

2️⃣ 🔮

Preview

Stop wasting time waiting around for your DAGs to finish testing.
Get instant feedback from your code each time you run it.

Interactive code
Immediately see results from your code’s output with an interactive notebook UI.

Data is a first-class citizen
Each block of code in your pipeline produces data that can be versioned, partitioned, and cataloged for future use.

Collaborate on cloud
Develop collaboratively on cloud resources, version control with Git, and test pipelines without waiting for an available shared staging environment.

3️⃣ 🚀

Launch

Don’t have a large team dedicated to Airflow?
Mage makes it easy for a single developer or small team to scale up and manage thousands of pipelines.

Fast deploy
Deploy Mage to AWS, GCP, or Azure with only 2 commands using maintained Terraform templates.

Scaling made simple
Transform very large datasets directly in your data warehouse or through a native integration with Spark.

Observability
Operationalize your pipelines with built-in monitoring, alerting, and observability through an intuitive UI.

🧙 Intro

Mage is an open-source data pipeline tool for transforming and integrating data.

  1. Quick start
  2. Demo
  3. Tutorials
  4. Documentation
  5. Features
  6. Core design principles
  7. Core abstractions
  8. Contributing

🏃‍♀️ Quick start

You can install and run Mage using Docker (recommended), pip, or conda.

Install using Docker

  1. Create a new project and launch tool (change demo_project to any other name if you want):

    docker run -it -p 6789:6789 -v $(pwd):/home/src mageai/mageai \
      /app/run_app.sh mage start demo_project
    
    • If you want to run Mage locally on a different port, change the first port after -p in the command above. For example, to change the port to 6790, run:
    docker run -it -p 6790:6789 -v $(pwd):/home/src mageai/mageai \
      /app/run_app.sh mage start demo_project
    

    Want to use Spark or other integrations? Read more about integrations.

  2. Open http://localhost:6789 in your browser and build a pipeline.

  • If you changed the Docker port for running Mage locally, go to the url http://127.0.0.1:[port] (e.g. http://127.0.0.1:6790) in your browser to view the pipelines dashboard.

Using pip or conda

  1. Install Mage

    (a) To the current virtual environment:

    pip install mage-ai
    

    or

    conda install -c conda-forge mage-ai
    

    (b) To a new virtual environment (e.g., myenv):

    python3 -m venv myenv
    source myenv/bin/activate
    pip install mage-ai
    

    or

    conda create -n myenv -c conda-forge mage-ai
    conda activate myenv
    

    For additional packages (e.g. spark, postgres, etc), please see Installing extra packages.

    If you run into errors, please see Install errors.

  2. Create a new project and launch tool (change demo_project to any other name if you want):

    mage start demo_project
    
  3. Open http://localhost:6789 in your browser and build a pipeline.


🎮 Demo

Live demo

Build and run a data pipeline with our demo app.

WARNING

The live demo is public to everyone, please don’t save anything sensitive (e.g. passwords, secrets, etc).

Demo video (5 min)

Mage quick start demo

Click the image to play video


👩‍🏫 Tutorials

Fire mage

🔮 Features

🎶 Orchestration Schedule and manage data pipelines with observability.
📓 Notebook Interactive Python, SQL, & R editor for coding data pipelines.
🏗️ Data integrations Synchronize data from 3rd party sources to your internal destinations.
🚰 Streaming pipelines Ingest and transform real-time data.
dbt Build, run, and manage your dbt models with Mage.

A sample data pipeline defined across 3 files ➝

  1. Load data ➝
    @data_loader
    def load_csv_from_file():
        return pd.read_csv('default_repo/titanic.csv')
    
  2. Transform data ➝
    @transformer
    def select_columns_from_df(df, *args):
        return df[['Age', 'Fare', 'Survived']]
    
  3. Export data ➝
    @data_exporter
    def export_titanic_data_to_disk(df) -> None:
        df.to_csv('default_repo/titanic_transformed.csv')
    

What the data pipeline looks like in the UI ➝

data pipeline overview

New? We recommend reading about blocks and learning from a hands-on tutorial.

Ask us questions on Slack


🏔️ Core design principles

Every user experience and technical design decision adheres to these principles.

💻 Easy developer experience Open-source engine that comes with a custom notebook UI for building data pipelines.
🚢 Engineering best practices built-in Build and deploy data pipelines using modular code. No more writing throwaway code or trying to turn notebooks into scripts.
💳 Data is a first-class citizen Designed from the ground up specifically for running data-intensive workflows.
🪐 Scaling is made simple Analyze and process large data quickly for rapid iteration.

🛸 Core abstractions

These are the fundamental concepts that Mage uses to operate.

Project Like a repository on GitHub; this is where you write all your code.
Pipeline Contains references to all the blocks of code you want to run, charts for visualizing data, and organizes the dependency between each block of code.
Block A file with code that can be executed independently or within a pipeline.
Data product Every block produces data after it's been executed. These are called data products in Mage.
Trigger A set of instructions that determine when or how a pipeline should run.
Run Stores information about when it was started, its status, when it was completed, any runtime variables used in the execution of the pipeline or block, etc.

🙋‍♀️ Contributing and developing

Add features and instantly improve the experience for everyone.

Check out the contributing guide to set up your development environment and start building.


👨‍👩‍👧‍👦 Community

Individually, we’re a mage.

🧙 Mage

Magic is indistinguishable from advanced technology. A mage is someone who uses magic (aka advanced technology). Together, we’re Magers!

🧙‍♂️🧙 Magers (/ˈmājər/)

A group of mages who help each other realize their full potential! Let’s hang out and chat together ➝

Hang out on Slack

For real-time news, fun memes, data engineering topics, and more, join us on ➝

Twitter Twitter
LinkedIn LinkedIn
GitHub GitHub
Slack Slack

🤔 Frequently Asked Questions (FAQs)

Check out our FAQ page to find answers to some of our most asked questions.


🪪 License

See the LICENSE file for licensing information.

Water mage casting spell


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

lftakakura_mage_ai-0.9.37a1-py3-none-any.whl (14.0 MB view details)

Uploaded Python 3

File details

Details for the file lftakakura_mage_ai-0.9.37a1-py3-none-any.whl.

File metadata

File hashes

Hashes for lftakakura_mage_ai-0.9.37a1-py3-none-any.whl
Algorithm Hash digest
SHA256 adaa99aa1d05b1ea1a2f6ef998e876e095733b40de9d87f97d1feb8ac0094a36
MD5 ebdf969fb3e26be30859d08047d172f6
BLAKE2b-256 d31f267b4668e27a81ca8cc64d9a8a0508688684e03940810e8ccbe2e309896e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page