Skip to main content

A module for read and write ARFF files in Python.

Project description

The liac-arff module implements functions to read and write ARFF files in Python. It was created in the Connectionist Artificial Intelligence Laboratory (LIAC), which takes place at the Federal University of Rio Grande do Sul (UFRGS), in Brazil.

ARFF (Attribute-Relation File Format) is an file format specially created for describe datasets which are used commonly for machine learning experiments and softwares. This file format was created to be used in Weka, the best representative software for machine learning automated experiments.

You can clone the arff-datasets repository for a large set of ARFF files.

Features

  • Read and write ARFF files using python built-in structures, such dictionaries and lists;

  • Supports the following attribute types: NUMERIC, REAL, INTEGER, STRING, and NOMINAL;

  • Has an interface similar to other built-in modules such as json, or zipfile;

  • Supports read and write the descriptions of files;

  • Supports missing values and names with spaces;

  • Supports unicode values and names;

  • Fully compatible with Python 2.6+ and Python 3.4+;

  • Under MIT License

How To Install

Via pip:

$ pip install liac-arff

Via easy_install:

$ easy_install liac-arff

Manually:

$ python setup.py install

Documentation

For a complete description of the module, consult the official documentation at http://packages.python.org/liac-arff/ with mirror in http://inf.ufrgs.br/~rppereira/arff/index.html

Usage

You can read an ARFF file as follows:

>>> import arff
>>> data = arff.load(open('wheater.arff', 'rb'))

Which results in:

>>> data
{
    u'attributes': [
        (u'outlook', [u'sunny', u'overcast', u'rainy']),
        (u'temperature', u'REAL'),
        (u'humidity', u'REAL'),
        (u'windy', [u'TRUE', u'FALSE']),
        (u'play', [u'yes', u'no'])],
    u'data': [
        [u'sunny', 85.0, 85.0, u'FALSE', u'no'],
        [u'sunny', 80.0, 90.0, u'TRUE', u'no'],
        [u'overcast', 83.0, 86.0, u'FALSE', u'yes'],
        [u'rainy', 70.0, 96.0, u'FALSE', u'yes'],
        [u'rainy', 68.0, 80.0, u'FALSE', u'yes'],
        [u'rainy', 65.0, 70.0, u'TRUE', u'no'],
        [u'overcast', 64.0, 65.0, u'TRUE', u'yes'],
        [u'sunny', 72.0, 95.0, u'FALSE', u'no'],
        [u'sunny', 69.0, 70.0, u'FALSE', u'yes'],
        [u'rainy', 75.0, 80.0, u'FALSE', u'yes'],
        [u'sunny', 75.0, 70.0, u'TRUE', u'yes'],
        [u'overcast', 72.0, 90.0, u'TRUE', u'yes'],
        [u'overcast', 81.0, 75.0, u'FALSE', u'yes'],
        [u'rainy', 71.0, 91.0, u'TRUE', u'no']
    ],
    u'description': u'',
    u'relation': u'weather'
}

You can write an ARFF file with this structure:

>>> print arff.dumps(data)
@RELATION weather

@ATTRIBUTE outlook {sunny, overcast, rainy}
@ATTRIBUTE temperature REAL
@ATTRIBUTE humidity REAL
@ATTRIBUTE windy {TRUE, FALSE}
@ATTRIBUTE play {yes, no}

@DATA
sunny,85.0,85.0,FALSE,no
sunny,80.0,90.0,TRUE,no
overcast,83.0,86.0,FALSE,yes
rainy,70.0,96.0,FALSE,yes
rainy,68.0,80.0,FALSE,yes
rainy,65.0,70.0,TRUE,no
overcast,64.0,65.0,TRUE,yes
sunny,72.0,95.0,FALSE,no
sunny,69.0,70.0,FALSE,yes
rainy,75.0,80.0,FALSE,yes
sunny,75.0,70.0,TRUE,yes
overcast,72.0,90.0,TRUE,yes
overcast,81.0,75.0,FALSE,yes
rainy,71.0,91.0,TRUE,no
%
%
%

Contributors

Project Page

https://github.com/renatopp/liac-arff

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

liac-arff-2.0.2.zip (15.1 kB view details)

Uploaded Source

File details

Details for the file liac-arff-2.0.2.zip.

File metadata

  • Download URL: liac-arff-2.0.2.zip
  • Upload date:
  • Size: 15.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for liac-arff-2.0.2.zip
Algorithm Hash digest
SHA256 d505ac76506673423c634c9c5988cc8f4cfc7c2b0c96ba3cf3173b3972fe6045
MD5 6abbdbddef3d639e86988d0436ea8dd2
BLAKE2b-256 10b645ed34d8798dc0ab5cd688efee3aeb782aa0c871c7ab98eb4f885289d909

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page