Skip to main content

A module for read and write ARFF files in Python.

Project description

https://travis-ci.org/renatopp/liac-arff.svg

The liac-arff module implements functions to read and write ARFF files in Python. It was created in the Connectionist Artificial Intelligence Laboratory (LIAC), which takes place at the Federal University of Rio Grande do Sul (UFRGS), in Brazil.

ARFF (Attribute-Relation File Format) is an file format specially created for describe datasets which are used commonly for machine learning experiments and softwares. This file format was created to be used in Weka, the best representative software for machine learning automated experiments.

You can clone the arff-datasets repository for a large set of ARFF files.

Features

  • Read and write ARFF files using python built-in structures, such dictionaries and lists;

  • Supports scipy.sparse.coo and lists of dictionaries as used by SVMLight

  • Supports the following attribute types: NUMERIC, REAL, INTEGER, STRING, and NOMINAL;

  • Has an interface similar to other built-in modules such as json, or zipfile;

  • Supports read and write the descriptions of files;

  • Supports missing values and names with spaces;

  • Supports unicode values and names;

  • Fully compatible with Python 2.7+ and Python 3.3+;

  • Under MIT License

How To Install

Via pip:

$ pip install liac-arff

Via easy_install:

$ easy_install liac-arff

Manually:

$ python setup.py install

Documentation

For a complete description of the module, consult the official documentation at http://packages.python.org/liac-arff/ with mirror in http://inf.ufrgs.br/~rppereira/docs/liac-arff/index.html

Usage

You can read an ARFF file as follows:

>>> import arff
>>> data = arff.load(open('wheater.arff', 'rb'))

Which results in:

>>> data
{
    u'attributes': [
        (u'outlook', [u'sunny', u'overcast', u'rainy']),
        (u'temperature', u'REAL'),
        (u'humidity', u'REAL'),
        (u'windy', [u'TRUE', u'FALSE']),
        (u'play', [u'yes', u'no'])],
    u'data': [
        [u'sunny', 85.0, 85.0, u'FALSE', u'no'],
        [u'sunny', 80.0, 90.0, u'TRUE', u'no'],
        [u'overcast', 83.0, 86.0, u'FALSE', u'yes'],
        [u'rainy', 70.0, 96.0, u'FALSE', u'yes'],
        [u'rainy', 68.0, 80.0, u'FALSE', u'yes'],
        [u'rainy', 65.0, 70.0, u'TRUE', u'no'],
        [u'overcast', 64.0, 65.0, u'TRUE', u'yes'],
        [u'sunny', 72.0, 95.0, u'FALSE', u'no'],
        [u'sunny', 69.0, 70.0, u'FALSE', u'yes'],
        [u'rainy', 75.0, 80.0, u'FALSE', u'yes'],
        [u'sunny', 75.0, 70.0, u'TRUE', u'yes'],
        [u'overcast', 72.0, 90.0, u'TRUE', u'yes'],
        [u'overcast', 81.0, 75.0, u'FALSE', u'yes'],
        [u'rainy', 71.0, 91.0, u'TRUE', u'no']
    ],
    u'description': u'',
    u'relation': u'weather'
}

You can write an ARFF file with this structure:

>>> print arff.dumps(data)
@RELATION weather

@ATTRIBUTE outlook {sunny, overcast, rainy}
@ATTRIBUTE temperature REAL
@ATTRIBUTE humidity REAL
@ATTRIBUTE windy {TRUE, FALSE}
@ATTRIBUTE play {yes, no}

@DATA
sunny,85.0,85.0,FALSE,no
sunny,80.0,90.0,TRUE,no
overcast,83.0,86.0,FALSE,yes
rainy,70.0,96.0,FALSE,yes
rainy,68.0,80.0,FALSE,yes
rainy,65.0,70.0,TRUE,no
overcast,64.0,65.0,TRUE,yes
sunny,72.0,95.0,FALSE,no
sunny,69.0,70.0,FALSE,yes
rainy,75.0,80.0,FALSE,yes
sunny,75.0,70.0,TRUE,yes
overcast,72.0,90.0,TRUE,yes
overcast,81.0,75.0,FALSE,yes
rainy,71.0,91.0,TRUE,no
%
%
%

Contributors

Project Page

https://github.com/renatopp/liac-arff

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

liac-arff-2.2.1.tar.gz (13.7 kB view details)

Uploaded Source

File details

Details for the file liac-arff-2.2.1.tar.gz.

File metadata

  • Download URL: liac-arff-2.2.1.tar.gz
  • Upload date:
  • Size: 13.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for liac-arff-2.2.1.tar.gz
Algorithm Hash digest
SHA256 09d8185c335ff708e38ab0839cd1b37d490026a402e3f549563fa59b259fee2e
MD5 fb3046beb1b43c47c0806c1414680cd7
BLAKE2b-256 543a25fa02f12a564374ee1cb0cdd729fbc27a1b5670a81f66f2fc9c86c07441

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page