Skip to main content

Multi-Launguage RoBERTa trained by RIKEN-AIP LIAT.

Project description

liat_ml_roberta

RoBERTa trained on Wikipedia Dump.

How to install

Can use pip to install.

pip install liat_ml_roberta

How to use

The loaded models and configurations can be used in the same way as transformers.roberta.

from liat_ml_roberta import RoBERTaTokenizer


def main():
    tokenizer = RoBERTaTokenizer.from_pretrained(version="en_20190121_m10000_v24000_base")
    print(tokenizer.tokenize("This is a pen."))

    config = RoBERTaConfig.from_pretrained("roberta_base_en_20190121_m10000_v24000_u125000")
    model = RoBERTaModel.from_pretrained("roberta_base_en_20190121_m10000_v24000_u125000", config=config)


if __name__ == "__main__":
    main()

Models

name lang size bpe merges vocab size updates wikipedia version
roberta_base_ja_20190121_m10000_v24000_u125000 ja roberta-base 10000 24000 125000 20190121
roberta_base_ja_20190121_m10000_v24000_u500000 ja roberta-base 10000 24000 500000 20190121
roberta_base_en_20190121_m10000_v24000_u125000 en roberta-base 10000 24000 125000 20190121
roberta_base_en_20190121_m10000_v24000_u500000 en roberta-base 10000 24000 500000 20190121
roberta_base_fr_20190121_m10000_v24000_u500000 fr roberta-base 10000 24000 500000 20190121
roberta_base_de_20190121_m10000_v24000_u500000 de roberta-base 10000 24000 500000 20190121

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

liat_ml_roberta-1.1.5.tar.gz (1.3 MB view details)

Uploaded Source

Built Distribution

liat_ml_roberta-1.1.5-py3-none-any.whl (1.3 MB view details)

Uploaded Python 3

File details

Details for the file liat_ml_roberta-1.1.5.tar.gz.

File metadata

  • Download URL: liat_ml_roberta-1.1.5.tar.gz
  • Upload date:
  • Size: 1.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.11

File hashes

Hashes for liat_ml_roberta-1.1.5.tar.gz
Algorithm Hash digest
SHA256 0bf27b8301d3e5d17cde4b1fb2c2a55a2c9f0bf5f5deeb560ad8cafc76c12e22
MD5 3d87cc83ac400b49c9a237fb4000a555
BLAKE2b-256 281bb8ce61b7251cc1f25b556fff0f82f6e8c255706b113f7a1c0a1f38a9badb

See more details on using hashes here.

File details

Details for the file liat_ml_roberta-1.1.5-py3-none-any.whl.

File metadata

File hashes

Hashes for liat_ml_roberta-1.1.5-py3-none-any.whl
Algorithm Hash digest
SHA256 9dc5a63e211fc06f9c48b764ce2a476a2e4c79d84f14c718d082316a5962bc91
MD5 afe873eeab69fc2f2509ac0279f40daf
BLAKE2b-256 086e4b3c89498279afb6d66b8db6a49691e450534792731e8db6f5c849b210b8

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page