A general purpose Python math module
Project description
LibPyMath
A fast, general purpose math library for Python
Install
Run pip install libpymath
to dowload and install libpymath
for your system. There are also wheels provided for many of the latest Python versions on Windows, Mac OS* and Linux thanks to the cibuildwheel
project.
Features and usage
Matrix Math
Easily create, manipulate and perform calculations with dense matrices. The matrices themselves are stored and manipulated with optimised C code, resulting in faster operations and more efficient calculations. To further increase the speed of the calculations, when libpymath imported into a project for the first time, it runs some tests on the CPU to find the optimal number of threads to use for the matrix calculations.
Progress Bars
Wrap a progress bar around any Python iterator and have a progress bar generated automatically. The progress bar will adjust its width to the width of the console, shows the current percentage, time and time remaining, as well as the number of iterations per second the bar is running at. The rate at which the bar updates also adjusts dynamically, ensuring that it has a minimal impact on the speed of the loop, while updating frequently enough to provide relevant information.
Neural Networks
Create, train and evaluate a neural network in only a few lines of code, customising the size of the network, its learning rate, it's activation functions (which can be customised on a per-layer basis) and the metrics which it logs. The network library also uses the efficient Matrix library, meaning it can train a simple network in under a second. You can also plot a graph of any metrics that are being logged, making it easy to evaluate the progress of the network.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distributions
Hashes for libpymath-0.6.1-cp38-cp38-win_amd64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7b78226ab411bc6d20306a4312195405eea16cbdcf719ece5acef1c0e7cb8364 |
|
MD5 | 6b863510aaa685bbfc4513800d410ee0 |
|
BLAKE2b-256 | cee2916fd70cee621651beac1c643cf2766ab9edf4268f9b6288e46ae1c76b70 |
Hashes for libpymath-0.6.1-cp38-cp38-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4fb83cbb69360adb60a143fdc3b19a781a2281837658724b3af12ad2cfdebc37 |
|
MD5 | b23c45ae6f4a4677cf7b4b5d21faed77 |
|
BLAKE2b-256 | bd1d72f13720fe164b49b1fedb2642e42872d82b373bd320c776d14fa515cb59 |
Hashes for libpymath-0.6.1-cp38-cp38-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | b63ca9af49e72dd30ffdb93f69a3c23cca4d0ab1717cc7ac78e1f83a29def8bd |
|
MD5 | 20fa6daeb8ecc98d4fb4fdf9a110d9bc |
|
BLAKE2b-256 | 4b8fac3a6d65fda91f1424b1bfe7e061153ce0aea34e5e72a30ad301eb762eaf |
Hashes for libpymath-0.6.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 678cfc9becc7d4cf21eb202e5df4290971dd66da735f367cc79f6b48b1fdb510 |
|
MD5 | 1fbb1294c9ea475d9fa31f47b67753a6 |
|
BLAKE2b-256 | 63ee79b48f6c1e9088a9a285a00c7a300bcc2cc4375c162e381ca067d4af06cc |
Hashes for libpymath-0.6.1-cp37-cp37m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | f9887d66e147e803c8331b32aa353a09b2e4dad721219cf7e86ac5e4abbecb88 |
|
MD5 | a00649cba3d3977a68a55a49d062c802 |
|
BLAKE2b-256 | 304a4021a75f0ed3d9d558626cfd6cbf7a1f66365894153b969c18d98b11b4c5 |
Hashes for libpymath-0.6.1-cp37-cp37m-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 85edbfb8c430cb90690e46f90bc5f411a8ecd5a1a0978c1edf61f326b08d2ac2 |
|
MD5 | 01d4fed0729f7c7dc08a38a05dcb4c25 |
|
BLAKE2b-256 | b252fb54ce5c17ac9e881b8d189bffca24bbb5cafb5662d9bcbf31ae35ff23a8 |
Hashes for libpymath-0.6.1-cp37-cp37m-macosx_10_9_intel.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 29f07078d6fd1aa22e207a1e87e5ca473225b150fec085d4a2abffddbdbdd30c |
|
MD5 | e7a2f884fac2d072ca55970f3f93127e |
|
BLAKE2b-256 | d77d8626ab99711ec40289e4d0ff66379d4c89b246b2bd5d723b469bcdfa3e01 |
Hashes for libpymath-0.6.1-cp36-cp36m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 64387fb2e0574e9ca66c1944d188e9a1e52bd2b7696b7475b01776c919e04506 |
|
MD5 | 29b93d995dd94a8a9601a6507566c34f |
|
BLAKE2b-256 | 7487df5b8268f8e19c334d5e67abbf46b8783aaada642bf9976e72e425aa3151 |
Hashes for libpymath-0.6.1-cp36-cp36m-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8d349238784fb618b590c72f87241eace55652e8d88106b979d72f0440ce6f85 |
|
MD5 | dcb12f0bbccc7490949638a8b28255e1 |
|
BLAKE2b-256 | b7153b4b9ee63c38e447a53fdfaab4f6eb556a2be8f1f8d685f020cd137d494b |
Hashes for libpymath-0.6.1-cp36-cp36m-macosx_10_9_intel.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 4cb476a79d51b1800c3bc21b73a41220558bd0b897127a725a35d6c4a2b99cef |
|
MD5 | b284b241b6077bb23f3c082039cd9bd0 |
|
BLAKE2b-256 | bfdedbf71d276bee163874173f6b2be20831c213028dd135c88999ece9dc643e |
Hashes for libpymath-0.6.1-cp35-cp35m-manylinux1_x86_64.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | c8d70de385ac59d63d549974b2ddb8f2554f4843c61ebfc57ad1cf8504379605 |
|
MD5 | 65304c7c8c480a711ed1473c7b298988 |
|
BLAKE2b-256 | a42eeea299fd250969efd5c4d80a2310aa3bb24f42b22230108bf23c87b7695b |
Hashes for libpymath-0.6.1-cp35-cp35m-manylinux1_i686.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | c52bd40880286e50490a255e308e42630db30960381fcfb968ecf7dcfed592e6 |
|
MD5 | b7e9df74d208d132f7b9c32647ce99b3 |
|
BLAKE2b-256 | 9a7c2076807772ef9d71483b7c608d9e36a4f1452dda5b3dc865f5b213a7fb5e |
Hashes for libpymath-0.6.1-cp35-cp35m-macosx_10_9_intel.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | b7ebee0e64b3009b3fbc2164df361926c3974990594a944b0e3e00ceb00c5031 |
|
MD5 | b6d06fc96afa3bbd4fd0b9f28fd2c6dd |
|
BLAKE2b-256 | 114b60692a6d9b650ab74d57b3f7aa23c3cbc3e1b9307e9db840f13085ec9c65 |