Skip to main content

Split Linearized Bregman Iteration

Project description

Citing libra_py_001_02
=============

The library libra_py is an academic project. The time and resources spent developing fastFM are therefore justified
by the number of citations of the software. If you publish scientific articles using libra_py, please cite the following article (bibtex entry `citation.bib <http://jmlr.org/papers/v17/15-355.bib>`_).

Bayer, I. "fastFM: A Library for Factorization Machines" Journal of Machine Learning Research 17, pp. 1-5 (2016)


libra_py: A Package for sparsity problem
============================================



Supported Operating Systems
---------------------------
fastFM has a continuous integration / testing servers (Travis) for **Linux (Ubuntu 14.04 LTS)**
and **OS X Mavericks**. Other OS are not actively supported.

Usage
-----
.. code-block:: python

from fastFM import als
fm = als.FMRegression(n_iter=1000, init_stdev=0.1, rank=2, l2_reg_w=0.1, l2_reg_V=0.5)
fm.fit(X_train, y_train)
y_pred = fm.predict(X_test)


Tutorials and other information are available `here <http://arxiv.org/abs/1505.00641>`_.
The C code is available as `subrepository <https://github.com/ibayer/fastFM-core>`_ and provides
a stand alone command line interface. If you have still **questions** after reading the documentation please open a issue at GitHub.

+----------------+------------------+-----------------------------+
| Family | Solver | Loss |
+================+==================+=============================+
| Gaussian | LBI_Linear | Square Loss |
+----------------+------------------+-----------------------------+
| Binomial | LBI_Logit | Logit Model |
+----------------+------------------+-----------------------------+

*Supported solvers and tasks*

Installation
------------

**binary install**

``pip install libra_py``


Tests
-----

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

libra_py_001_04-0.0.1.tar.gz (11.1 kB view details)

Uploaded Source

File details

Details for the file libra_py_001_04-0.0.1.tar.gz.

File metadata

File hashes

Hashes for libra_py_001_04-0.0.1.tar.gz
Algorithm Hash digest
SHA256 c040460b0fdd6d449a590551d73fa13449d7f83ceb0055b9c11a5f6168a51d59
MD5 5cf676eb8dd29c39712db8407d841516
BLAKE2b-256 3b7e73678fe64dfb63be1ea0d7113a6345bc9dce11979fdafdcb4cb4011fcfb7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page