Split Linearized Bregman Iteration
Project description
Citing libra_py_001_01
=============
The library libra_py is an academic project. The time and resources spent developing fastFM are therefore justified
by the number of citations of the software. If you publish scientific articles using libra_py, please cite the following article (bibtex entry `citation.bib <http://jmlr.org/papers/v17/15-355.bib>`_).
Bayer, I. "fastFM: A Library for Factorization Machines" Journal of Machine Learning Research 17, pp. 1-5 (2016)
libra_py: A Package for sparsity problem
============================================
Supported Operating Systems
---------------------------
fastFM has a continuous integration / testing servers (Travis) for **Linux (Ubuntu 14.04 LTS)**
and **OS X Mavericks**. Other OS are not actively supported.
Usage
-----
.. code-block:: python
from fastFM import als
fm = als.FMRegression(n_iter=1000, init_stdev=0.1, rank=2, l2_reg_w=0.1, l2_reg_V=0.5)
fm.fit(X_train, y_train)
y_pred = fm.predict(X_test)
Tutorials and other information are available `here <http://arxiv.org/abs/1505.00641>`_.
The C code is available as `subrepository <https://github.com/ibayer/fastFM-core>`_ and provides
a stand alone command line interface. If you have still **questions** after reading the documentation please open a issue at GitHub.
+----------------+------------------+-----------------------------+
| Family | Solver | Loss |
+================+==================+=============================+
| Gaussian | LBI_Linear | Square Loss |
+----------------+------------------+-----------------------------+
| Binomial | LBI_Logit | Logit Model |
+----------------+------------------+-----------------------------+
*Supported solvers and tasks*
Installation
------------
**binary install**
``pip install libra_py``
Tests
-----
=============
The library libra_py is an academic project. The time and resources spent developing fastFM are therefore justified
by the number of citations of the software. If you publish scientific articles using libra_py, please cite the following article (bibtex entry `citation.bib <http://jmlr.org/papers/v17/15-355.bib>`_).
Bayer, I. "fastFM: A Library for Factorization Machines" Journal of Machine Learning Research 17, pp. 1-5 (2016)
libra_py: A Package for sparsity problem
============================================
Supported Operating Systems
---------------------------
fastFM has a continuous integration / testing servers (Travis) for **Linux (Ubuntu 14.04 LTS)**
and **OS X Mavericks**. Other OS are not actively supported.
Usage
-----
.. code-block:: python
from fastFM import als
fm = als.FMRegression(n_iter=1000, init_stdev=0.1, rank=2, l2_reg_w=0.1, l2_reg_V=0.5)
fm.fit(X_train, y_train)
y_pred = fm.predict(X_test)
Tutorials and other information are available `here <http://arxiv.org/abs/1505.00641>`_.
The C code is available as `subrepository <https://github.com/ibayer/fastFM-core>`_ and provides
a stand alone command line interface. If you have still **questions** after reading the documentation please open a issue at GitHub.
+----------------+------------------+-----------------------------+
| Family | Solver | Loss |
+================+==================+=============================+
| Gaussian | LBI_Linear | Square Loss |
+----------------+------------------+-----------------------------+
| Binomial | LBI_Logit | Logit Model |
+----------------+------------------+-----------------------------+
*Supported solvers and tasks*
Installation
------------
**binary install**
``pip install libra_py``
Tests
-----
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
libra_py_001_01-0.0.1.tar.gz
(11.1 kB
view details)
File details
Details for the file libra_py_001_01-0.0.1.tar.gz
.
File metadata
- Download URL: libra_py_001_01-0.0.1.tar.gz
- Upload date:
- Size: 11.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 853f2f6eba8dfc1c168672ce44c96b588e87e9d7b569b900cd9b3025ec586d2f |
|
MD5 | 87aefda57e014f57757c15029084c040 |
|
BLAKE2b-256 | 5b482ea5834fb6361d145a28829b014aa37754494a296dc0858f8d8dd29c779d |