Split Linearized Bregman Iteration
Project description
Citing libra_py_001_05
=============
The library libra_py is an academic project. The time and resources spent developing fastFM are therefore justified
by the number of citations of the software. If you publish scientific articles using libra_py, please cite the following article (bibtex entry 'citation.bib <http://papers.nips.cc/paper/6288-split-lbi-an-iterative-regularization-path-with-structural-sparsity/bibtex>' ).
Huang, Chendi and Sun, Xinwei and Xiong, Jiechao and Yao, Yuan. "Split LBI: An Iterative Regularization Path with Structural Sparsity" Advances in Neural Information Processing Systems 29, pp. 3369--3377 (2016)
libra_py_001_05: A Package for sparsity problem
============================================
Usage
-----
.. code-block:: python
from libra_py_001_05 import lbi
obj = lbi.LB(X,y,family='gaussian')
obj.predict(X)
Tutorials and other information are available 'here <https://arxiv.org/abs/1604.05910>' and
'here <https://www.sciencedirect.com/science/article/pii/S1063520316000038>'.
The R code is available as 'subrepository <https://cran.r-project.org/web/packages/Libra/index.html>'; the Matlab code is available as 'subrepository <https://github.com/yuany-pku/split-lbi>'.
If you have still **questions** after reading the documentation please open a issue at GitHub.
+----------------+------------------+-----------------------------+
| Family | Solver | Loss |
+================+==================+=============================+
| Gaussian | LBI_Linear | Square Loss |
+----------------+------------------+-----------------------------+
| Binomial | LBI_Logit | Logit Model |
+----------------+------------------+-----------------------------+
*Supported solvers and tasks*
Installation
------------
**binary install**
``pip install libra_py_001_05``
Tests
-----
import libra_py_001_05
=============
The library libra_py is an academic project. The time and resources spent developing fastFM are therefore justified
by the number of citations of the software. If you publish scientific articles using libra_py, please cite the following article (bibtex entry 'citation.bib <http://papers.nips.cc/paper/6288-split-lbi-an-iterative-regularization-path-with-structural-sparsity/bibtex>' ).
Huang, Chendi and Sun, Xinwei and Xiong, Jiechao and Yao, Yuan. "Split LBI: An Iterative Regularization Path with Structural Sparsity" Advances in Neural Information Processing Systems 29, pp. 3369--3377 (2016)
libra_py_001_05: A Package for sparsity problem
============================================
Usage
-----
.. code-block:: python
from libra_py_001_05 import lbi
obj = lbi.LB(X,y,family='gaussian')
obj.predict(X)
Tutorials and other information are available 'here <https://arxiv.org/abs/1604.05910>' and
'here <https://www.sciencedirect.com/science/article/pii/S1063520316000038>'.
The R code is available as 'subrepository <https://cran.r-project.org/web/packages/Libra/index.html>'; the Matlab code is available as 'subrepository <https://github.com/yuany-pku/split-lbi>'.
If you have still **questions** after reading the documentation please open a issue at GitHub.
+----------------+------------------+-----------------------------+
| Family | Solver | Loss |
+================+==================+=============================+
| Gaussian | LBI_Linear | Square Loss |
+----------------+------------------+-----------------------------+
| Binomial | LBI_Logit | Logit Model |
+----------------+------------------+-----------------------------+
*Supported solvers and tasks*
Installation
------------
**binary install**
``pip install libra_py_001_05``
Tests
-----
import libra_py_001_05
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
libra_py_001_06-0.0.1.tar.gz
(11.8 kB
view details)
File details
Details for the file libra_py_001_06-0.0.1.tar.gz
.
File metadata
- Download URL: libra_py_001_06-0.0.1.tar.gz
- Upload date:
- Size: 11.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1bb79f277cafb6f7b525ec3179fb9f289fcdc6b2672b5c6339a4807d9951273a |
|
MD5 | c3a7a99448a54480b6b75b096b6886d2 |
|
BLAKE2b-256 | 71ab0f0e21a66ae566c1869354ef6d3d2e3686eaa5ace8fdf7e4e29dd493e61a |