Skip to main content

Split Linearized Bregman Iteration

Project description

Citing libra_py_001_05
=============

The library libra_py is an academic project. The time and resources spent developing fastFM are therefore justified
by the number of citations of the software. If you publish scientific articles using libra_py, please cite the following article (bibtex entry 'citation.bib <http://papers.nips.cc/paper/6288-split-lbi-an-iterative-regularization-path-with-structural-sparsity/bibtex>' ).

Huang, Chendi and Sun, Xinwei and Xiong, Jiechao and Yao, Yuan. "Split LBI: An Iterative Regularization Path with Structural Sparsity" Advances in Neural Information Processing Systems 29, pp. 3369--3377 (2016)


libra_py_001_05: A Package for sparsity problem
============================================



Usage
-----
.. code-block:: python

from libra_py_001_05 import lbi
obj = lbi.LB(X,y,family='gaussian')
obj.predict(X)


Tutorials and other information are available 'here <https://arxiv.org/abs/1604.05910>' and
'here <https://www.sciencedirect.com/science/article/pii/S1063520316000038>'.

The R code is available as 'subrepository <https://cran.r-project.org/web/packages/Libra/index.html>'; the Matlab code is available as 'subrepository <https://github.com/yuany-pku/split-lbi>'.

If you have still **questions** after reading the documentation please open a issue at GitHub.

+----------------+------------------+-----------------------------+
| Family | Solver | Loss |
+================+==================+=============================+
| Gaussian | LBI_Linear | Square Loss |
+----------------+------------------+-----------------------------+
| Binomial | LBI_Logit | Logit Model |
+----------------+------------------+-----------------------------+

*Supported solvers and tasks*

Installation
------------

**binary install**

``pip install libra_py_001_05``


Tests
-----
import libra_py_001_05

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

libra_py_001_06-0.0.1.tar.gz (11.8 kB view details)

Uploaded Source

File details

Details for the file libra_py_001_06-0.0.1.tar.gz.

File metadata

File hashes

Hashes for libra_py_001_06-0.0.1.tar.gz
Algorithm Hash digest
SHA256 1bb79f277cafb6f7b525ec3179fb9f289fcdc6b2672b5c6339a4807d9951273a
MD5 c3a7a99448a54480b6b75b096b6886d2
BLAKE2b-256 71ab0f0e21a66ae566c1869354ef6d3d2e3686eaa5ace8fdf7e4e29dd493e61a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page