Skip to main content

Calculates multi-taper windowed and time-frequency reassignment spectrograms

Project description

ProjectStatus Version BuildStatus License PythonVersions DOI

Libtfr is a library for calculating multi-taper time-frequency reassignment (TFR) spectrograms. Time-frequency reassignment is a method that makes use of the instantaneous frequency and phase values in a spectrogram to ‘deconvolve’ the image, and can yield substantially sharper spectrograms with better signal-noise resolution than conventional windowed spectrograms (i.e. short-time Fourier transforms) or multi-taper spectrograms (using the discrete prolate spherical sequences).

The library will also calculate conventional windowed spectrograms and multitaper spectrograms.

Libtfr has C and Python APIs. The Python package has been tested on CPython 3.7-3.11 and PyPy 3.7-3.10.

Python package

To install from PyPI:

pip install libtfr

Wheels are built for most versions of linux and macosx using cibuildwheel. These are statically linked to generic LAPACK routines and a fairly old version of fftw, so if speed is a concern, consider compiling yourself against optimized libraries of your own following the instructions below. Windows wheels with statically linked FFTW and LAPACK libraries have kindly been developed by carlkl, but they very out of date now. Install with pip install -i https://pypi.anaconda.org/carlkl/simple libtfr

Installing from source

To build the python module, you’ll need to install some system dependencies first. On Debian:

sudo apt-get install libfftw3-dev liblapack-dev

On OS X with Macports:

sudo port install fftw-3

To build and install the python module from source:

pip install .

Use

To compute a time-frequency reassignment spectrogram in Python:

import libtfr
nfft = 256
Np = 201
shift = 10
K = 6
tm = 6.0
flock = 0.01
tlock = 5

# load signal of dimension (npoints,)
signal = ...
S = libtfr.tfr_spec(signal, nfft, shift, Np, K, tm, flock, tlock)

See below for more information on the parameters.

Mulitaper Spectral Analysis

Libtfr can also calculate multitaper and standard windowed Fourier transforms. For example, discrete prolate spherical sequences can be used to obtain multiple independent estimates of spectral statistics while maintaining optimal time-frequency tradeoffs (Prieto et al, 2007). The Python interface for MT calculations is somewhat different:

import libtfr

# load signal of dimension (npoints,)
signal = ...

# generate a transform object with size equal to signal length and 5 tapers
D = libtfr.mfft_dpss(npoints, 3, 5)
# complex windowed FFTs, one per taper
Z = D.mtfft(signal)
# power spectrum density estimate using adaptive method to average tapers
P = D.mtpsd(signal)

# generate a transform object with size 512 samples and 5 tapers for short-time analysis
D = libtfr.mfft_dpss(512, 3, 5)
# complex STFT with frame shift of 10 samples
Z = D.mtstft(signal, 10)
# spectrogram with frame shift of 10 samples
P = D.mtspec(signal, 10)

# generate a transform object with 200-sample hanning window padded to 256 samples
from numpy import hanning
D = libtfr.mfft_precalc(256, hanning(200))
# spectrogram with frame shift of 10 samples
P = D.mtspec(signal, 10)

C Library

To build the C library you will also need to have scons installed. You may need to edit the SConstruct file to make sure it points to the correct LAPACK libraries. To build the shared library:

scons lib

To install the libraries and header (default to /usr/local/lib and /usr/local/include):

scons install

A small test program, test_tfr, can be built with scons test. The program generates a signal with sinusoidally modulated frequency and then calculates a multitaper PSD, a multitaper spectrogram, and a time-frequency reassigned spectrogram. The results are output in ASCII format to tfr_in.dat, tfr_out_psd.dat, tfr_out_mtm.dat, and tfr_out_tfr.dat.

See src/test_tfr.c for an example of how to use the C API.

Documentation

The C header tfr.h and python module libtfr.pyx are both extensively documented.

Algorithm and usage notes

The software was assembled from various MATLAB sources, including the time-frequency toolkit, Xiao and Flandrin’s work on multitaper reassignment, and code from Gardner and Magnasco.

The basic principle is to use reassignment to increase the precision of the time-frequency localization, essentially by deconvolving the spectrogram with the TF representation of the window, recovering the center of mass of the spectrotemporal energy. Reassigned TFRs typically show a ‘froth’ for noise, and strong narrow lines for coherent signals like pure tones, chirps, and so forth. The use of multiple tapers reinforces the coherent signals while averaging out the froth, giving a very clean spectrogram with optimal precision and resolution properties.

Gardner & Magnasco (2006) calculate reassignment based on a different algorithm from Xiao and Flandrin (2007). The latter involves 3 different FFT operations on the signal windowed with the hermitian taper h(t), its derivative h’(t), and its time product t × h(t). The G&M algorithm only uses two FFTs, on the signal windowed with a Gaussian and its time derivative. If I understand their methods correctly, however, this derivation is based on properties of the fourier transform of the gaussian, and isn’t appropriate for window functions based on the Hermitian tapers, which have more optimal distribution of energy over the TF plane (i.e., it takes fewer Hermitian tapers than Gaussian tapers to achieve the same quality spectrogram)

Therefore, the algorithm is mostly from X&F, though I include time and frequency locking parameters from G&M, which specify how far energy is allowed to be reassigned in the TF plane. Large displacements generally arise from numerical errors, so this helps to sharpen the lines somewhat. I also included the time/frequency interpolation from Prieto et al (2007), which can be used to get higher precision (at the expense of less averaging) from smaller analysis windows.

Some fiddling with parameters is necessary to get the best spectrograms from a given sort of signal. Like the window size in an STFT, the taper parameters control the time-frequency resolution. However, in the reassignment spectrogram the precision (i.e. localization) is not affected by the taper size, so the effects of taper size will generally only be seen when two coherent signals are close to each other in time or frequency. Nh controls the size of the tapers; one can also adjust tm, the time support of the tapers, but depending on the number of tapers used, this shouldn’t get a whole lot smaller than 5. Increased values of Nh result in improved narrowband resolution (i.e. between pure tones) but closely spaced clicks can become smeared. Decreasing Nh increases the resolution between broadband components (i.e. clicks) but smears closely spaced narrowband components. The effect of smearing can be ameliorated to some extent by adjusting the frequency/time locking parameters.

The frequency zoom parameter can be used to speed up calculation quite a bit. Since calculating the multitaper reassigned spectrogram takes 3xNtapers FFT operations, smaller FFTs are generally better. The spectrogram can then be binned at a finer resolution during reassignment. These two sets of parameters should generate fairly similar results:

nfft=512, shift=10, tm=6, Nh=257, zoomf=1, zoomt=1 (default)
nfft=256, shift=10, tm=6, Nh=257, zoomf=2, zoomt=1

Increasing the order generally reduces the background ‘froth’, but interference between closely spaced components may increase.

Additional improvements in resolution may be achievable averaging across different window sizes, or by using other averaging methods (i.e. as in Xiao and Flandrin 2007)

License

libtfr was written by C Daniel Meliza and is licensed under the Gnu Public License (GPL) version 2; see COPYING for details.

some code is adapted from chronux (http://www.chronux.org), by Partha Mitra and Hemant Bokil, also licensed under GPL version 2

THE PROGRAMS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF MERCANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR ANY OTHER WARRANTY, EXPRESS OR IMPLIED. IN NO EVENT SHALL THE UNIVERSITY OF CHICAGO OR DR. MELIZA BE LIABLE FOR ANY DIRECT OR CONSEQUENTIAL DAMAGES RESULTING FROM USE OF THE PROGRAMS. THE USER BEARS THE ENTIRE RISK FOR USE OF THE PROGRAMS.

References

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

libtfr-2.1.9.tar.gz (234.1 kB view details)

Uploaded Source

Built Distributions

libtfr-2.1.9-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

libtfr-2.1.9-pp310-pypy310_pp73-macosx_11_0_arm64.whl (532.2 kB view details)

Uploaded PyPy macOS 11.0+ ARM64

libtfr-2.1.9-pp310-pypy310_pp73-macosx_10_15_x86_64.whl (605.3 kB view details)

Uploaded PyPy macOS 10.15+ x86-64

libtfr-2.1.9-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

libtfr-2.1.9-pp39-pypy39_pp73-macosx_11_0_arm64.whl (532.1 kB view details)

Uploaded PyPy macOS 11.0+ ARM64

libtfr-2.1.9-pp39-pypy39_pp73-macosx_10_15_x86_64.whl (605.2 kB view details)

Uploaded PyPy macOS 10.15+ x86-64

libtfr-2.1.9-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

libtfr-2.1.9-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (3.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

libtfr-2.1.9-pp38-pypy38_pp73-macosx_11_0_arm64.whl (532.6 kB view details)

Uploaded PyPy macOS 11.0+ ARM64

libtfr-2.1.9-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (607.5 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

libtfr-2.1.9-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.1 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

libtfr-2.1.9-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl (3.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ i686

libtfr-2.1.9-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (607.5 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

libtfr-2.1.9-cp313-cp313-musllinux_1_2_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ x86-64

libtfr-2.1.9-cp313-cp313-musllinux_1_2_i686.whl (6.7 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ i686

libtfr-2.1.9-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

libtfr-2.1.9-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl (4.6 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ i686

libtfr-2.1.9-cp313-cp313-macosx_11_0_arm64.whl (555.4 kB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

libtfr-2.1.9-cp313-cp313-macosx_10_13_x86_64.whl (635.1 kB view details)

Uploaded CPython 3.13 macOS 10.13+ x86-64

libtfr-2.1.9-cp312-cp312-musllinux_1_2_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

libtfr-2.1.9-cp312-cp312-musllinux_1_2_i686.whl (6.7 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ i686

libtfr-2.1.9-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

libtfr-2.1.9-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (4.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

libtfr-2.1.9-cp312-cp312-macosx_11_0_arm64.whl (557.0 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

libtfr-2.1.9-cp312-cp312-macosx_10_13_x86_64.whl (637.6 kB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

libtfr-2.1.9-cp311-cp311-musllinux_1_2_x86_64.whl (7.0 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

libtfr-2.1.9-cp311-cp311-musllinux_1_2_i686.whl (6.7 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ i686

libtfr-2.1.9-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

libtfr-2.1.9-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (4.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

libtfr-2.1.9-cp311-cp311-macosx_11_0_arm64.whl (556.6 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

libtfr-2.1.9-cp311-cp311-macosx_10_9_x86_64.whl (639.7 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

libtfr-2.1.9-cp310-cp310-musllinux_1_2_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

libtfr-2.1.9-cp310-cp310-musllinux_1_2_i686.whl (6.7 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ i686

libtfr-2.1.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

libtfr-2.1.9-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (4.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

libtfr-2.1.9-cp310-cp310-macosx_11_0_arm64.whl (556.2 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

libtfr-2.1.9-cp310-cp310-macosx_10_9_x86_64.whl (639.2 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

libtfr-2.1.9-cp39-cp39-musllinux_1_2_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

libtfr-2.1.9-cp39-cp39-musllinux_1_2_i686.whl (6.7 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ i686

libtfr-2.1.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

libtfr-2.1.9-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (4.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

libtfr-2.1.9-cp39-cp39-macosx_11_0_arm64.whl (556.7 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

libtfr-2.1.9-cp39-cp39-macosx_10_9_x86_64.whl (639.8 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

libtfr-2.1.9-cp38-cp38-musllinux_1_2_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

libtfr-2.1.9-cp38-cp38-musllinux_1_2_i686.whl (6.7 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ i686

libtfr-2.1.9-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

libtfr-2.1.9-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (4.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

libtfr-2.1.9-cp38-cp38-macosx_11_0_arm64.whl (555.5 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

libtfr-2.1.9-cp38-cp38-macosx_10_9_x86_64.whl (638.1 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

libtfr-2.1.9-cp37-cp37m-musllinux_1_2_x86_64.whl (6.9 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ x86-64

libtfr-2.1.9-cp37-cp37m-musllinux_1_2_i686.whl (6.6 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ i686

libtfr-2.1.9-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

libtfr-2.1.9-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (4.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

libtfr-2.1.9-cp37-cp37m-macosx_10_9_x86_64.whl (636.1 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file libtfr-2.1.9.tar.gz.

File metadata

  • Download URL: libtfr-2.1.9.tar.gz
  • Upload date:
  • Size: 234.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.6

File hashes

Hashes for libtfr-2.1.9.tar.gz
Algorithm Hash digest
SHA256 1b1463910ea7836c0d38d462b7c66c0b05ac5655f2fffeed69e53a9e9ff9694d
MD5 8d15833b6d3fc419e74d5133ee73fb75
BLAKE2b-256 d02a911a3dedb4be1c2a081cacfbd98d888f252452d48ca130d54d0561bdaf2b

See more details on using hashes here.

File details

Details for the file libtfr-2.1.9-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for libtfr-2.1.9-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9c2324234c9531adb7ca92e77e00c561e3baa2b2ca9353f81e9098a774b62c09
MD5 10afc5c6fff9f850c19b529be3f39e36
BLAKE2b-256 04c28777cb7f6f40318d3ed1b6b2f6c5164795567082af7577ffa27c77c0008a

See more details on using hashes here.

File details

Details for the file libtfr-2.1.9-pp310-pypy310_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for libtfr-2.1.9-pp310-pypy310_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0b79893a277a3882b17dfa859447652668a0d8bf0edda3b6d1b515a5a62e74fb
MD5 47aad277106044a68d19a65481e0c721
BLAKE2b-256 101630d0d64ad5a94f455ed37d08606ebb92c0a7b2ffd11c23f3d736f26052a9

See more details on using hashes here.

File details

Details for the file libtfr-2.1.9-pp310-pypy310_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for libtfr-2.1.9-pp310-pypy310_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 4116b47bdf37c7485a2faedaaf9f84491ed1881e7f944641932628e962f534fb
MD5 e8ca5e257e43c79809eb85c299385fca
BLAKE2b-256 24be8b1659cb4aea9d0df7629f9e902892b12cac83b90b4f4f18915c1833df66

See more details on using hashes here.

File details

Details for the file libtfr-2.1.9-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for libtfr-2.1.9-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f2e3cf3de2b1a77c0d268e8cc2e5c8936fcb77a5e54ac8ac58f9ccd8b75144c5
MD5 b7966207f065a925f8bd4dd9c1610489
BLAKE2b-256 0f3efa7199ee63b2d961369a17145f8329451a5f9dee35bfa85ee9135194c489

See more details on using hashes here.

File details

Details for the file libtfr-2.1.9-pp39-pypy39_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for libtfr-2.1.9-pp39-pypy39_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8c94409cefd83c7a6a925cea5d2c41641042daccc8947808a361e1873587ddb8
MD5 3f7b9fcf37e7da50c4133de65010bd7e
BLAKE2b-256 538fb20c3624de8a542bcc3c3aed24a97d6045c1e8a31da78a206bba65e96a22

See more details on using hashes here.

File details

Details for the file libtfr-2.1.9-pp39-pypy39_pp73-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for libtfr-2.1.9-pp39-pypy39_pp73-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 208b872b6aba9875316730fd8cbdb4b675636735cbc7dc437ea83b88af1d8091
MD5 5e207286c6374adedc75821aaf40d099
BLAKE2b-256 1b484e1cbba73d119ffda15974a5f2cef218e8cbbfe366de655b3937ab928456

See more details on using hashes here.

File details

Details for the file libtfr-2.1.9-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for libtfr-2.1.9-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ccd8b693d8bdb20e5cc88d45707dff5ac65a8852280cf7d2cf9720de5f6fa804
MD5 09cb079fe365313085c0473dcb64ec74
BLAKE2b-256 4bc83bc294385fac1632714cb9fa3e7d1d92b5bb472727ad37fd3e63a1d3c33a

See more details on using hashes here.

File details

Details for the file libtfr-2.1.9-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for libtfr-2.1.9-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 883a2eabb41dfa9aa75e83125874be577cc0da6418c7b70a2b2367223aae5329
MD5 71b3d3c8cee4a833e11ee5bca09d2855
BLAKE2b-256 bc82970d3ba1ed68b49d287798c87a5112d146d1e82e3d1161092b54f570da38

See more details on using hashes here.

File details

Details for the file libtfr-2.1.9-pp38-pypy38_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for libtfr-2.1.9-pp38-pypy38_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0603116fb0babb64fbf48b5cf49d6029205905dfd7bc5eab4f1ddfa2d40c5220
MD5 25bd2f18e1ec5e2ffffdd71d40686d66
BLAKE2b-256 8c2ee7113f32317664181f694e684addf073fde79a7d283293762a10a7117428

See more details on using hashes here.

File details

Details for the file libtfr-2.1.9-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for libtfr-2.1.9-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 389fb66b84ee7e11c32e9a851fb8f885e50d0bb5976aeea915096ff2ce29335b
MD5 520ef4f10b8bb856a2ebb7ce14c552eb
BLAKE2b-256 39c89895e670900572d7615aa5c08280ad83abc9a58177e685edda3b1024905c

See more details on using hashes here.

File details

Details for the file libtfr-2.1.9-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for libtfr-2.1.9-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c4191fa51d2d7e214249b3d3c6b327440544660b93c33e75ec155c94e6954bfc
MD5 9798379edfba09ccd8b48ccdd36c1f61
BLAKE2b-256 72f78446363a9dff5163d2544b7a48e66ac6c8b0dfe4799a8490d5daf7703ef6

See more details on using hashes here.

File details

Details for the file libtfr-2.1.9-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for libtfr-2.1.9-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f2d7b74412776f40d535b0624127055cb260615b59b4a3876dd44859af6a5a9d
MD5 1cc2f13e4b33a11d877aae70ad5c9843
BLAKE2b-256 7681ff749252778841fbd16e1e16ce7fceda134297945e020d211f1ad8486a09

See more details on using hashes here.

File details

Details for the file libtfr-2.1.9-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for libtfr-2.1.9-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 98f3ce905e37a544c2ff693a02de363d5ab59bf17ce2b53146415d732db927a4
MD5 c2df566d901e2a941b601d7eeee5dfb6
BLAKE2b-256 d759f40bd48658617cbbab706138b290f19323c413aae04711373f57ce35912c

See more details on using hashes here.

File details

Details for the file libtfr-2.1.9-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for libtfr-2.1.9-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 9e15bf3f9981c57a6041329a61d1925dc6b2a719fafb6bf9ad1139ec630230e3
MD5 3ad00fb5a2fa9358b1a9de96bc6cc50c
BLAKE2b-256 6d7ac709cd6c4aab850f43915d1618d65c42875a0c3a2e5a9215fd5b55dbcb42

See more details on using hashes here.

File details

Details for the file libtfr-2.1.9-cp313-cp313-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for libtfr-2.1.9-cp313-cp313-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 fe834e57551c301355892276fafc6fcc520f7f91cf16248481d2be9d737f4600
MD5 a86164d4de2f729efe453d6ba17fb604
BLAKE2b-256 15b48cceed44679dcb8d3455aaf1b6d6baa8688a3c27301e3a78187e0d240be2

See more details on using hashes here.

File details

Details for the file libtfr-2.1.9-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for libtfr-2.1.9-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a14d41b606cc82c884f7af094babfb79477b31a814564f9e5e07e1ff4db48b58
MD5 fca675a71d12a3ee3f66d51206758087
BLAKE2b-256 12e24b2979af1e218529c0b089ff56b065fe0f364479cfa7f1d77cc96bab79ba

See more details on using hashes here.

File details

Details for the file libtfr-2.1.9-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for libtfr-2.1.9-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b32dc4d3e1c40a0cc05db2ff0264d9d177bbce706564e05626fa240f56db8fc8
MD5 3c542ab4576ab86b0903e0f891de9ed6
BLAKE2b-256 1c701a1f1f39325ca447807aaf2a737aa45e67591a3acb18bf74a3ab2ba6f1c5

See more details on using hashes here.

File details

Details for the file libtfr-2.1.9-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for libtfr-2.1.9-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ba47c4960be532cbefb303c8ee872240dfc7ca939b145a918ff416dc8ffad91b
MD5 cf02dcbf6afd69ddb609090eb37f71a7
BLAKE2b-256 799da908297c2570313a054aa7d64820574b7eac992ad3039336700cb1a0dff3

See more details on using hashes here.

File details

Details for the file libtfr-2.1.9-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for libtfr-2.1.9-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 775326fd8ed069eb604c57dc8a164017070100068603d63b9a43d9932eaf665e
MD5 ddcd2239e867a8a86baf37f5ab32f20a
BLAKE2b-256 938a92ecb8aff684b1f63b74221757c78e09e7b4b15f0e7fb81d034ca7126a07

See more details on using hashes here.

File details

Details for the file libtfr-2.1.9-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for libtfr-2.1.9-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 0bdfc4c3dd26e115bebe537a193133c8205060b267af85cc2ff29340f48c67c0
MD5 758bd814d53e0b9fecfc896671704b3b
BLAKE2b-256 92f59c93268d665d84293ff6b0aeafe0b3d88e33f40e383a7a93182dbf27c368

See more details on using hashes here.

File details

Details for the file libtfr-2.1.9-cp312-cp312-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for libtfr-2.1.9-cp312-cp312-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 323e255a6350b42d6b2213aa7ee59f927b39965fa3da420fded4501efbc7cfd6
MD5 67a463fc480baac0536915297b83e968
BLAKE2b-256 e86671f9a03f984b62dca3c100973b3be7643a704c0b8bd8169289b38aae393a

See more details on using hashes here.

File details

Details for the file libtfr-2.1.9-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for libtfr-2.1.9-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7558e260c1a064794de306f1bd38615102b1b6ada53249f27f494ae62bdc4dc3
MD5 eebe0d0c4ab8f443332dfe12e3c129fc
BLAKE2b-256 a81858e03bffb8d6f0050b4d3bb2952f6fc27dcd83bd1dd356cf18bea401502b

See more details on using hashes here.

File details

Details for the file libtfr-2.1.9-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for libtfr-2.1.9-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8d2cf76b10ca873b76cc58d5cc10528adaceb5a970a0cf49822e12e186e25e89
MD5 f4d2e1ca003746ae9ef353032551313c
BLAKE2b-256 6d742dc0c48366955c968ad5ccf618fbe54cf446d2fb80869db8eb1aeb2b01a0

See more details on using hashes here.

File details

Details for the file libtfr-2.1.9-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for libtfr-2.1.9-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4b466323f317826db8d93581d9ec42ebc13a24bab3a663f58793228bcd85368e
MD5 be63677248537a60a3bebedf5a04a0da
BLAKE2b-256 9310881e900dd47a1dde2d84beac255c5d3ee6db1bb53591831f67923f99fc85

See more details on using hashes here.

File details

Details for the file libtfr-2.1.9-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for libtfr-2.1.9-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 bf1f0a06ab76a410985227a99092ae85d614c4a5fc92ec2ace82a47f82ff16cd
MD5 6904e30d055d299750b009950519bf2b
BLAKE2b-256 01b4c8c7f2bba2fce3a1a9103eb1ed944d8256dee766701bed157eaf15db188d

See more details on using hashes here.

File details

Details for the file libtfr-2.1.9-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for libtfr-2.1.9-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 2a45a301cd703329b7c6cf92897afb83c0edbc71d8406005bfb1f75d52b0c1dd
MD5 ff1534e0f6fc8e069465ccf1c8650bef
BLAKE2b-256 519ef1bbd72a8480209615049578f285d79b4fb8952510231025b25998720ad9

See more details on using hashes here.

File details

Details for the file libtfr-2.1.9-cp311-cp311-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for libtfr-2.1.9-cp311-cp311-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 9da708aef9b46a62def1dea4fa224cf1c046149aa65c89fdd74d1fb43586becb
MD5 af32172d410d11ad9a973010c0aa93d3
BLAKE2b-256 4cd513971580f7ce443c029534b4811a7e4d45225fdadcb618ad35e1d8a69ed0

See more details on using hashes here.

File details

Details for the file libtfr-2.1.9-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for libtfr-2.1.9-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 48b32580bff1cbe678fac507aa8dfd0d001f55e50eee851d3703ca163a2fb40f
MD5 9d9cd06ab1ebacf93c548f34ecd7da57
BLAKE2b-256 961fb93ae04df627264406da5f52ba1fa3d4cd0da07d7a0b78eed9559beedaae

See more details on using hashes here.

File details

Details for the file libtfr-2.1.9-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for libtfr-2.1.9-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 208bb2ca2441d54e39c147d94ae2a78820fa12ccebf9bb877d06b6b697006b0f
MD5 0d1cb9368ca64c52e633c070b2b019eb
BLAKE2b-256 6a58a2c1857cf65e479c003d206be13f1022c680889a91f4c492559bee221629

See more details on using hashes here.

File details

Details for the file libtfr-2.1.9-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for libtfr-2.1.9-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0c9bf3a75405fd4ee0739e4486e090f9785e0fc385581278a80861ab09199001
MD5 4ab763835e6001cd076cb1cf76518ed3
BLAKE2b-256 2614a6c6c87a088409c4e403fde39f5ff446163924f0b6ff5b74e95237ee85e4

See more details on using hashes here.

File details

Details for the file libtfr-2.1.9-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for libtfr-2.1.9-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 706ac66ab25ccebf5274587b6cc8b694aeb8431d9de27fce9b51dba21a743701
MD5 612634ce3e9660dcd67fa7b67aeb6fff
BLAKE2b-256 81c362c340bb0c30e799ee5dc8b0c09905585c701427ada5e3d1126c35960fe7

See more details on using hashes here.

File details

Details for the file libtfr-2.1.9-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for libtfr-2.1.9-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 b059bfcb45667e6e850142025c0ac6c7c9356f943e4540ac5a1943e0d51d7d60
MD5 d112c0a23873ecb2f3d46e95acadf2f4
BLAKE2b-256 86ea70d58819a6ccdec010e1502edeca4e45c944715f03ac5f6c6e9b23e221fc

See more details on using hashes here.

File details

Details for the file libtfr-2.1.9-cp310-cp310-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for libtfr-2.1.9-cp310-cp310-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 50f55c06cd0619a9b37bc11584ea6274da2ba394e8650415f748b60a9ab4b15c
MD5 05b79eed86abf6a35d95352d5f7acf40
BLAKE2b-256 e9dd18cc5dfa078f5820fbc6ba97b7c5e0c92afc30f9951dd6605670e6a05a8a

See more details on using hashes here.

File details

Details for the file libtfr-2.1.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for libtfr-2.1.9-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3a756f63371c3afbf1a955606efe49dcd63fb8af5193bea2247fe56c04d7b13d
MD5 9e0eaebde965e2b9002346cbc5969727
BLAKE2b-256 22aebff06949e9a549055d9613c03f663bf3a7c81204af4df8a7b9956d5513c2

See more details on using hashes here.

File details

Details for the file libtfr-2.1.9-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for libtfr-2.1.9-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 5c7638b0d6ba4c068cec22463444491c56a5c96f70fd6cd7e9a94d1a067b492b
MD5 434038004ad76b4538a2030362f599df
BLAKE2b-256 bd1ab961e3875ffd6a9c9e44fba17566203e9662613b0dbd6e51b24741988eaa

See more details on using hashes here.

File details

Details for the file libtfr-2.1.9-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for libtfr-2.1.9-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 81ae979a3bf8f483ba0d1936cc0995dcd856de3a17a306b3cc26a28f06d37497
MD5 5e79c1bee06bae8a928fb5b1f667f947
BLAKE2b-256 3fe03e79a5bf5d318cc6b23432106c4c475de35806009204bc9156dd721a5942

See more details on using hashes here.

File details

Details for the file libtfr-2.1.9-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for libtfr-2.1.9-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ea36e7aceefa439f39bcb7933176d7f95a74da89f87e14349d4f5fd7c6190241
MD5 8ff353bd2e6095d44d265bf3223fe788
BLAKE2b-256 5cbf55259321e6a03b1d135ce0335ff5cfe6dadea00d0919fb5c139829894e5e

See more details on using hashes here.

File details

Details for the file libtfr-2.1.9-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for libtfr-2.1.9-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 3d3a7a9993b978a6e6d9a0c2873899045f9bc2ff555dfd6eb7dd47713b8910ac
MD5 1cdbb8dffb2d52a421eb67f2dc1960e8
BLAKE2b-256 7d92da2614c3b0b4db82164a4bd9cffe328e9543f6e8004a21ce7ee388bd6dba

See more details on using hashes here.

File details

Details for the file libtfr-2.1.9-cp39-cp39-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for libtfr-2.1.9-cp39-cp39-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 f4ecf39ca078809196ca812a557161c45c8a2a7619fea710987912abc73046b6
MD5 21df30c4d0b21c1b6214072df0202a48
BLAKE2b-256 bcf075694c44236580ce87481c1246f95e2e8c6cc4a77fc7d4c7c9531fed44b5

See more details on using hashes here.

File details

Details for the file libtfr-2.1.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for libtfr-2.1.9-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8912426404a09e4840ce4fc7aed4fcf2ded7841e53c8b3f5689f322d89d1d281
MD5 6359f1aff675b8d86c26d9e070686c55
BLAKE2b-256 e737d8b511e55c5381881e4ef132831b010117daac5cc4d53069daf4ad4ada31

See more details on using hashes here.

File details

Details for the file libtfr-2.1.9-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for libtfr-2.1.9-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 310f86b2cba72a46391a7e2840b63c33adedef0d7c9b9c5179f4b404922c8cf9
MD5 f4be4afc02ca58be948a2ce11058f3b1
BLAKE2b-256 20a870cb4e65492feff7e35da4e683b40dd78c6611f1ef6d615ab491aab12d84

See more details on using hashes here.

File details

Details for the file libtfr-2.1.9-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for libtfr-2.1.9-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 56f02dc7b19a2f86d509579d6ca84bc04fe04a0145216c2762f304a39e5d6a69
MD5 d1828b9602fcddb0395eca3ea116c238
BLAKE2b-256 b050741fc790a9b323cf054d09617c243f7b732c0da0a6b79a221505ef2fc5dd

See more details on using hashes here.

File details

Details for the file libtfr-2.1.9-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for libtfr-2.1.9-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9cad3a8a26f0bce1a524f5c6454220836d67166dfbac66eb8e348034bd8e8216
MD5 64ee66bd327918f8c91f1a8606a02642
BLAKE2b-256 1f9f3e342489a013c78449bb2406c872e786c543bef653f4a7309488db761f87

See more details on using hashes here.

File details

Details for the file libtfr-2.1.9-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for libtfr-2.1.9-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 a29f6bc02857ef74c29b7d95bd5b102038f9f7882ae89ab3ec81a6f91462483e
MD5 48e2d42c48bfd1c96bef11ad6efde7a9
BLAKE2b-256 a56a860e7aef99214df45f9fe33f2dc8e6414b2a1c2106d005c06152f598e8d0

See more details on using hashes here.

File details

Details for the file libtfr-2.1.9-cp38-cp38-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for libtfr-2.1.9-cp38-cp38-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 6fa9960d42ff65bad6efbec823d9f649c8f6d04c9cfbbb1e12cf10e647df84e2
MD5 d4f7ad6eeedbd82b952a713d2d1fb08b
BLAKE2b-256 9f7da26c19d227512f080594a3ebbdc0f7c355cbd78ca6b5fc38b49534c458fd

See more details on using hashes here.

File details

Details for the file libtfr-2.1.9-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for libtfr-2.1.9-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d9fb61a35eb72e1a2304524fb7e111a2566c7ea1d046ef7050d99b964d6232be
MD5 d7b93ce3864bf4087012fe86198f57b1
BLAKE2b-256 4349854df133de6d26cf01a7f65c082c82ac0ebff75ae13d669787b277390982

See more details on using hashes here.

File details

Details for the file libtfr-2.1.9-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for libtfr-2.1.9-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4a936cfcd31a7ede98015ef290c9c2382ac5cafb88635aee9b9ddc1b412f1d6b
MD5 60bc5a0e644339ed1bd780ae8ef3a5db
BLAKE2b-256 8f16088c0606c55fe0e53e5ee686d287a7e562719b9acf45e79bc486878dfebd

See more details on using hashes here.

File details

Details for the file libtfr-2.1.9-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for libtfr-2.1.9-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 45b42a8abe5633f145d26bfb03043e068b7b86d945d9409797cfc217b3f3d1c5
MD5 4fc0dd6e23c7968e17cf2617794e4c25
BLAKE2b-256 2b78a9fa46c9b5d7892b23a0d1296ae2159a376cb6e403848d0f39de7b91faa3

See more details on using hashes here.

File details

Details for the file libtfr-2.1.9-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for libtfr-2.1.9-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 16eafc50ed99af650e05a760cb3024b6f5adb4cd5f3993116005fa74e2662c9e
MD5 18b5f33d240b37994e042a87a6e98003
BLAKE2b-256 14a36f76eaab6d4169153549645c7ae1f62d49ac8d12bf2c669c7052fbf1cb44

See more details on using hashes here.

File details

Details for the file libtfr-2.1.9-cp37-cp37m-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for libtfr-2.1.9-cp37-cp37m-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 098edd8a4771343cb24f633bc802a118ff63fd2c8945f5367c1b7f26dbaf7bb9
MD5 5b5c4e29c6a68306da2727d2fc297a78
BLAKE2b-256 0a3161a9659e2b836584fa10c605f36694508fc395ffcf2fcc2b505b0b3835d4

See more details on using hashes here.

File details

Details for the file libtfr-2.1.9-cp37-cp37m-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for libtfr-2.1.9-cp37-cp37m-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 17bdd8a09c703bef1a28aaae27316186140b6c688cdd99c9f6364e1a351b8c36
MD5 94df250246b2c46642e6c378538bdcd8
BLAKE2b-256 80d7050e9527a0bd78f79dc74516f1737cb01def78c8ca1d3ff27087c5d7e1a5

See more details on using hashes here.

File details

Details for the file libtfr-2.1.9-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for libtfr-2.1.9-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 43e7fa915a2da1e615b3775d6783a54530c7e7c213a25558e2ee8974087157f4
MD5 427e7ce8aa1f5a13ddd2ca5430eba372
BLAKE2b-256 6216f80f7bcd97778b48a5d9dcc9710c72efb38e3b5581553608ec72e6d7afce

See more details on using hashes here.

File details

Details for the file libtfr-2.1.9-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for libtfr-2.1.9-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b9b230b0d45a2c2ff8ced2ae4bdbfa2b1d84e6393a1b255043f25d05fa33b2c3
MD5 66fd7247b99c84a19d8ff3faca07bccd
BLAKE2b-256 dd4f849cb27f68391de226fa34ce394fba3b48fb05d1a1e004e911754325315b

See more details on using hashes here.

File details

Details for the file libtfr-2.1.9-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for libtfr-2.1.9-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b6954c51e0627dda2e56375774408bed604307697eed10b7ee0fefc3ac744bb9
MD5 aec977939880cf9e30f58e61b035e9d2
BLAKE2b-256 3458f432f29c6f232a3d32b0743f9ed52eafb5f8f24c02099fc3f92732db1e85

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page