Skip to main content

Tensor Products for Lie Groups.

Project description

lie-nn

This library aims to help the development of equivariant polynomials on reductive Lie groups and finite groups. It contains fundamental mathematical operations such as tensor products, symmetric products, and direct sums of reducible and irreducible representations of groups.

The library is modular, and new groups can be easily implemented.

Installation

To install via pip, follow the steps below:

git clone git@github.com:lie-nn/lie-nn.git
pip install ./lie-nn

Tabulated Irreducible Representations

Irreducible representations (irreps) of reductive Lie groups play an essential role as they are budling blocks of other finite-dimensional representations. We implement irreducible representations for a variety of Lie groups by providing the following:

  • labelling of the irreps
  • their dimensions
  • an explicit basis (called generators)
  • direct sums of irreps
  • decompositions of tensor product of irreps into irreps (Clebsch Gordans)
  • symmetric power of irreps (Symmetric generalized Clebsch Clebsch Gordans)

lie-nn currently has tabulated the irreps of the following groups:

Groups Potential Applications
$\mathrm{SO}_{\mathbb{R}}(3)$ 3D Point Clouds (Molecules, Vision)
$\mathrm{O}_{\mathbb{R}}(3)$ Rotations + Reflections
$\mathrm{SO}_{\mathbb{R}}(1,3)$ Particles Physics
$\mathrm{SU}_{\mathbb{R}}(N)$ Quantum Physics
$\mathrm{SU}_{\mathbb{R}}(3)$ QCD
$\mathrm{U}_{\mathbb{R}}(1)$ Electromagnetism
$\mathrm{SL}_{\mathbb{R}}(2, \mathbb{C})$ -

Irreps of a product of all these groups are also supported. Moreover isomorphics groups have the same irreducible representations. As all the irreps of $\mathfrak{sl}_ {n}$ ($SU(N)$ in the code) are implemented, the irreps of the following Lie algebras can also be obtained:

$\mathfrak{so}_ {3} \simeq \mathfrak{sp}_ {2} = \mathfrak{sl}_ {2}$

$\mathfrak{so}_ {4} \simeq \mathfrak{sl}_ {2} \oplus \mathfrak{sl} _{2}$

$\mathfrak{so}_ {6} \simeq \mathfrak{sl}_ {4}$

We aim to add new tabulated irreps for more groups, including the other classical complex Lie groups $Sp(2n)$, $SO(2n+1)$ and $SO(2n)$ (PR are welcomed).

Data Types

The data are organised in three categories:

  • GenericRep - a generic representation of a Lie group
  • ReducedRep - a reduced representation into irreps
  • Rep - a reducible representations (Sn, so(2n)_adjoint, so(2n+1)_adjoint)
  • TabulatedIrrep - a tabulated irreps (SU2, SU2Real, O3, SO3, SL2C, SO13, SU3, SU4, Z2)

Functions

  • change_basis - change of basis for the representation

  • change_algebra - change of basis for the algebra

  • infer_change_of_basis - infer the change of basis matrix between two representations

  • clebsch_gordan - Clebsch-Gordan coefficients

  • reduce - creates a reduced representation (ReducedRep)

  • direct_sum - direct sum of two representations

  • tensor_product - tensor product of two representations

  • reduced_tensor_product_basis - change of basis matrix between the tensor product and the irreps

  • reduced_symmetric_tensor_product_basis - change of basis matrix between the symmetric tensor product and the irreps

  • conjugate - conjugate representation

  • make_explicitly_real - some representations can be made explicitly real

  • group_product - representation in the direct product of the groups

Example

import lie_nn as lie

lie.clebsch_gordan(
    lie.irreps.SU3((1, 1, 0)),
    lie.irreps.SU3((1, 0, 0)),
    lie.irreps.SU3((2, 1, 0)),
)

Formatting the code

pycln .
black .

References

If you use this code, please cite our papers:

@misc{batatia2023general,
      title={A General Framework for Equivariant Neural Networks on Reductive Lie Groups}, 
      author={Ilyes Batatia and Mario Geiger and Jose Munoz and Tess Smidt and Lior Silberman and Christoph Ortner},
      year={2023},
      eprint={2306.00091},
      archivePrefix={arXiv},
      primaryClass={stat.ML}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

lie_nn-0.0.0.tar.gz (41.0 kB view details)

Uploaded Source

Built Distribution

lie_nn-0.0.0-py3-none-any.whl (55.4 kB view details)

Uploaded Python 3

File details

Details for the file lie_nn-0.0.0.tar.gz.

File metadata

  • Download URL: lie_nn-0.0.0.tar.gz
  • Upload date:
  • Size: 41.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.17

File hashes

Hashes for lie_nn-0.0.0.tar.gz
Algorithm Hash digest
SHA256 18fee1806d3feba7acdafc9cc697dba71636f029d8bb56e3287810de1c6b29d3
MD5 afbbf5f5390d7e4143c7e032112da33a
BLAKE2b-256 5cf5df0b023ba001d939c210ac00df0d7ed9784a431f9f0bbe46cdd7c89a628f

See more details on using hashes here.

File details

Details for the file lie_nn-0.0.0-py3-none-any.whl.

File metadata

  • Download URL: lie_nn-0.0.0-py3-none-any.whl
  • Upload date:
  • Size: 55.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.17

File hashes

Hashes for lie_nn-0.0.0-py3-none-any.whl
Algorithm Hash digest
SHA256 0f91a2e7cf17bee48670c288b8860eecb68f559568950f0b4c60393285a3a173
MD5 6436d4c28312d4dfccc2ba50f434bab9
BLAKE2b-256 9e96b8eb432c0d01a5ebe50e5c46e517d09114eddfe8def7b36b8bc2e2807a99

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page