Skip to main content

Light Recurrent Unit

Project description

Light Recurrent Unit - Pytorch (wip)

Implementation of the Light Recurrent Unit in Pytorch

Install

$ pip install light-recurrent-unit-pytorch

Usage

import torch
from light_recurrent_unit_pytorch import LightRecurrentUnitCell

lru_cell = LightRecurrentUnitCell(256)

x = torch.randn(1, 1024, 256)
hidden = torch.randn(1, 1024, 256)

next_hidden = lru_cell(x, hidden) # (1, 1024, 256)

Citations

@Article{electronics13163204,
    AUTHOR = {Ye, Hong and Zhang, Yibing and Liu, Huizhou and Li, Xuannong and Chang, Jiaming and Zheng, Hui},
    TITLE = {Light Recurrent Unit: Towards an Interpretable Recurrent Neural Network for Modeling Long-Range Dependency},
    JOURNAL = {Electronics},
    VOLUME = {13},
    YEAR = {2024},
    NUMBER = {16},
    ARTICLE-NUMBER = {3204},
    URL = {https://www.mdpi.com/2079-9292/13/16/3204},
    ISSN = {2079-9292},
    DOI = {10.3390/electronics13163204}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

light_recurrent_unit_pytorch-0.0.1.tar.gz (1.0 MB view details)

Uploaded Source

Built Distribution

File details

Details for the file light_recurrent_unit_pytorch-0.0.1.tar.gz.

File metadata

File hashes

Hashes for light_recurrent_unit_pytorch-0.0.1.tar.gz
Algorithm Hash digest
SHA256 4313c63e4e1dc8d6d13f93c8de72ae1b9df81c815bb75d000857c9349ff78380
MD5 5f8a9f2e55914ad5b32f82a9190d4502
BLAKE2b-256 2b5f3dc5e4c95cebc1963a1036b280cb4b855e562d8d80437f78b956dc5d5aff

See more details on using hashes here.

File details

Details for the file light_recurrent_unit_pytorch-0.0.1-py3-none-any.whl.

File metadata

File hashes

Hashes for light_recurrent_unit_pytorch-0.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 875f22d9d44784138e1b4d2aa489e43c32be3b9fbda11237be9e2d2a66275219
MD5 286b77a009a98fd126645c30fe4446ea
BLAKE2b-256 b5576931f8906a995a9481a078d711f3c7a2e18d710e7c6ea687bc6e3f0b33e2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page