Skip to main content

Light Recurrent Unit

Project description

Light Recurrent Unit - Pytorch

Implementation of the Light Recurrent Unit in Pytorch

Install

$ pip install light-recurrent-unit-pytorch

Usage

import torch
from light_recurrent_unit_pytorch import LightRecurrentUnitCell

cell = LightRecurrentUnitCell(256)

x = torch.randn(2, 256)
hidden = torch.randn(2, 256)

next_hidden = cell(x, hidden) # (2, 256)

Single layer

import torch
from light_recurrent_unit_pytorch import LightRecurrentUnitLayer

layer = LightRecurrentUnitLayer(256)

x = torch.randn(2, 1024, 256)

out = layer(x) # (2, 1024, 256)

assert out.shape == x.shape

Stacked

import torch
from light_recurrent_unit_pytorch import LightRecurrentUnit

lru = LightRecurrentUnit(256, depth = 4)

x = torch.randn(2, 1024, 256)

out = lru(x) # (2, 1024, 256)

assert out.shape == x.shape

Citations

@Article{electronics13163204,
    AUTHOR = {Ye, Hong and Zhang, Yibing and Liu, Huizhou and Li, Xuannong and Chang, Jiaming and Zheng, Hui},
    TITLE = {Light Recurrent Unit: Towards an Interpretable Recurrent Neural Network for Modeling Long-Range Dependency},
    JOURNAL = {Electronics},
    VOLUME = {13},
    YEAR = {2024},
    NUMBER = {16},
    ARTICLE-NUMBER = {3204},
    URL = {https://www.mdpi.com/2079-9292/13/16/3204},
    ISSN = {2079-9292},
    DOI = {10.3390/electronics13163204}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

light_recurrent_unit_pytorch-0.0.16.tar.gz (1.0 MB view details)

Uploaded Source

Built Distribution

File details

Details for the file light_recurrent_unit_pytorch-0.0.16.tar.gz.

File metadata

File hashes

Hashes for light_recurrent_unit_pytorch-0.0.16.tar.gz
Algorithm Hash digest
SHA256 d44837e16b9adac9645566ffbf36a41fd6f5bab308aedf2f7acd9cd6b4db6159
MD5 9486c3e8c999e5b5f7fcb77e1cf26ccd
BLAKE2b-256 151fc23d0ad32a6106e399a65d61c84cabe9540cf1366eda82bfdb0ea252b1b6

See more details on using hashes here.

File details

Details for the file light_recurrent_unit_pytorch-0.0.16-py3-none-any.whl.

File metadata

File hashes

Hashes for light_recurrent_unit_pytorch-0.0.16-py3-none-any.whl
Algorithm Hash digest
SHA256 6e29c8d3a220f190437fd6b39a56e673fa783b12015b254678ec9f8f6e67c576
MD5 701c45a5c3e622b1ab52b69ba13c9eb5
BLAKE2b-256 7d112da920abea94cfb1e28090be68573f845b966a4de3b1915f4c2404730433

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page