Skip to main content

Light Recurrent Unit

Project description

Light Recurrent Unit - Pytorch (wip)

Implementation of the Light Recurrent Unit in Pytorch

Install

$ pip install light-recurrent-unit-pytorch

Usage

import torch
from light_recurrent_unit_pytorch import LightRecurrentUnitCell

lru_cell = LightRecurrentUnitCell(256)

x = torch.randn(2, 256)
hidden = torch.randn(2, 256)

next_hidden = lru_cell(x, hidden) # (2, 256)

Single layer

import torch
from light_recurrent_unit_pytorch import LightRecurrentUnitLayer

lru_layer = LightRecurrentUnitLayer(256)

x = torch.randn(2, 1024, 256)

output = lru_layer(x) # (2, 1024, 256)
assert x.shape == output.shape

Citations

@Article{electronics13163204,
    AUTHOR = {Ye, Hong and Zhang, Yibing and Liu, Huizhou and Li, Xuannong and Chang, Jiaming and Zheng, Hui},
    TITLE = {Light Recurrent Unit: Towards an Interpretable Recurrent Neural Network for Modeling Long-Range Dependency},
    JOURNAL = {Electronics},
    VOLUME = {13},
    YEAR = {2024},
    NUMBER = {16},
    ARTICLE-NUMBER = {3204},
    URL = {https://www.mdpi.com/2079-9292/13/16/3204},
    ISSN = {2079-9292},
    DOI = {10.3390/electronics13163204}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

light_recurrent_unit_pytorch-0.0.3.tar.gz (1.0 MB view details)

Uploaded Source

Built Distribution

File details

Details for the file light_recurrent_unit_pytorch-0.0.3.tar.gz.

File metadata

File hashes

Hashes for light_recurrent_unit_pytorch-0.0.3.tar.gz
Algorithm Hash digest
SHA256 fa1183f4f8d92f79fd0c87073338ad82fb362c4b95e2669c2cc4c4a854c649de
MD5 7c61d6310e51e48d95debc0ee5600cde
BLAKE2b-256 27d88a237de183a5c834218d7ceae2b95e15ce79745561d67902b9b4ce728f63

See more details on using hashes here.

File details

Details for the file light_recurrent_unit_pytorch-0.0.3-py3-none-any.whl.

File metadata

File hashes

Hashes for light_recurrent_unit_pytorch-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 57e6b83febe9039e1fd085bd7421bf3126aeda94ecd0735132f11b64c6d9b02e
MD5 347483508d1061986c7619be4db028ab
BLAKE2b-256 b7ea707ae903df5a5922c175098ea82a1728b4720bb7122db6a95f294edfa4a1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page