Skip to main content

Light Recurrent Unit

Project description

Light Recurrent Unit - Pytorch (wip)

Implementation of the Light Recurrent Unit in Pytorch

Install

$ pip install light-recurrent-unit-pytorch

Usage

import torch
from light_recurrent_unit_pytorch import LightRecurrentUnitCell

lru_cell = LightRecurrentUnitCell(256)

x = torch.randn(2, 256)
hidden = torch.randn(2, 256)

next_hidden = lru_cell(x, hidden) # (2, 256)

Single layer

import torch
from light_recurrent_unit_pytorch import LightRecurrentUnitLayer

lru_layer = LightRecurrentUnitLayer(256)

x = torch.randn(2, 1024, 256)

output = lru_layer(x) # (2, 1024, 256)
assert x.shape == output.shape

Stacked

import torch
from light_recurrent_unit_pytorch import LightRecurrentUnit

lru = LightRecurrentUnit(256, depth = 4)

x = torch.randn(2, 1024, 256)

out = lru(x)

assert out.shape == x.shape

Citations

@Article{electronics13163204,
    AUTHOR = {Ye, Hong and Zhang, Yibing and Liu, Huizhou and Li, Xuannong and Chang, Jiaming and Zheng, Hui},
    TITLE = {Light Recurrent Unit: Towards an Interpretable Recurrent Neural Network for Modeling Long-Range Dependency},
    JOURNAL = {Electronics},
    VOLUME = {13},
    YEAR = {2024},
    NUMBER = {16},
    ARTICLE-NUMBER = {3204},
    URL = {https://www.mdpi.com/2079-9292/13/16/3204},
    ISSN = {2079-9292},
    DOI = {10.3390/electronics13163204}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

light_recurrent_unit_pytorch-0.0.4.tar.gz (1.0 MB view details)

Uploaded Source

Built Distribution

File details

Details for the file light_recurrent_unit_pytorch-0.0.4.tar.gz.

File metadata

File hashes

Hashes for light_recurrent_unit_pytorch-0.0.4.tar.gz
Algorithm Hash digest
SHA256 af253115dc1bee822e1c947962dd05a71ffed9f52cfc2982012f6ea733f26906
MD5 3764bb7917e65a611088577fd25398fc
BLAKE2b-256 5e1142a5ce8b8de843494bbb109700a45a64f7f669fef400c0f4a89afbc73c36

See more details on using hashes here.

File details

Details for the file light_recurrent_unit_pytorch-0.0.4-py3-none-any.whl.

File metadata

File hashes

Hashes for light_recurrent_unit_pytorch-0.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 aa2933ee6216a46610d75e44632c0fe47b9f4215f72220fce0d75ae75c0c17f3
MD5 a9f71a326c7afebab004d73e9d8fbea2
BLAKE2b-256 92e2b39329e3406cd4898492a157426153d3c87da35f73489bfb15601af669ac

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page