Skip to main content

Light Recurrent Unit

Project description

Light Recurrent Unit - Pytorch (wip)

Implementation of the Light Recurrent Unit in Pytorch

Install

$ pip install light-recurrent-unit-pytorch

Usage

import torch
from light_recurrent_unit_pytorch import LightRecurrentUnitCell

lru_cell = LightRecurrentUnitCell(256)

x = torch.randn(2, 256)
hidden = torch.randn(2, 256)

next_hidden = lru_cell(x, hidden) # (2, 256)

Single layer

import torch
from light_recurrent_unit_pytorch import LightRecurrentUnitLayer

lru_layer = LightRecurrentUnitLayer(256)

x = torch.randn(2, 1024, 256)

output = lru_layer(x) # (2, 1024, 256)
assert x.shape == output.shape

Stacked

import torch
from light_recurrent_unit_pytorch import LightRecurrentUnit

lru = LightRecurrentUnit(256, depth = 4)

x = torch.randn(2, 1024, 256)

out = lru(x)

assert out.shape == x.shape

Citations

@Article{electronics13163204,
    AUTHOR = {Ye, Hong and Zhang, Yibing and Liu, Huizhou and Li, Xuannong and Chang, Jiaming and Zheng, Hui},
    TITLE = {Light Recurrent Unit: Towards an Interpretable Recurrent Neural Network for Modeling Long-Range Dependency},
    JOURNAL = {Electronics},
    VOLUME = {13},
    YEAR = {2024},
    NUMBER = {16},
    ARTICLE-NUMBER = {3204},
    URL = {https://www.mdpi.com/2079-9292/13/16/3204},
    ISSN = {2079-9292},
    DOI = {10.3390/electronics13163204}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

light_recurrent_unit_pytorch-0.0.5.tar.gz (1.0 MB view details)

Uploaded Source

Built Distribution

File details

Details for the file light_recurrent_unit_pytorch-0.0.5.tar.gz.

File metadata

File hashes

Hashes for light_recurrent_unit_pytorch-0.0.5.tar.gz
Algorithm Hash digest
SHA256 346749236e286797e1f8747e9f21ae1e89cd597c7bcb6bca82bf21b0264f6e53
MD5 5c984221858e0678f82f68e95b642cea
BLAKE2b-256 43bb0a59485267c5dcc432ddbfed0c1cc9e66ed073b115c95b5736b75b760784

See more details on using hashes here.

File details

Details for the file light_recurrent_unit_pytorch-0.0.5-py3-none-any.whl.

File metadata

File hashes

Hashes for light_recurrent_unit_pytorch-0.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 0657a18b9ef18ed3c6efc9298e913b00f91c355b5f9bf86677cb595f867e16aa
MD5 beb261952acc9b43c51b0b4d7338b8db
BLAKE2b-256 85f553fb2dea28a77e4c7275a720f3e2fb31ea3942c9bb9428691e6b3896f480

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page