Skip to main content

Light Recurrent Unit

Project description

Light Recurrent Unit - Pytorch

Implementation of the Light Recurrent Unit in Pytorch

Install

$ pip install light-recurrent-unit-pytorch

Usage

import torch
from light_recurrent_unit_pytorch import LightRecurrentUnitCell

lru_cell = LightRecurrentUnitCell(256)

x = torch.randn(2, 256)
hidden = torch.randn(2, 256)

next_hidden = lru_cell(x, hidden) # (2, 256)

Single layer

import torch
from light_recurrent_unit_pytorch import LightRecurrentUnitLayer

lru_layer = LightRecurrentUnitLayer(256)

x = torch.randn(2, 1024, 256)

output = lru_layer(x) # (2, 1024, 256)
assert x.shape == output.shape

Stacked

import torch
from light_recurrent_unit_pytorch import LightRecurrentUnit

lru = LightRecurrentUnit(256, depth = 4)

x = torch.randn(2, 1024, 256)

out = lru(x)

assert out.shape == x.shape

Citations

@Article{electronics13163204,
    AUTHOR = {Ye, Hong and Zhang, Yibing and Liu, Huizhou and Li, Xuannong and Chang, Jiaming and Zheng, Hui},
    TITLE = {Light Recurrent Unit: Towards an Interpretable Recurrent Neural Network for Modeling Long-Range Dependency},
    JOURNAL = {Electronics},
    VOLUME = {13},
    YEAR = {2024},
    NUMBER = {16},
    ARTICLE-NUMBER = {3204},
    URL = {https://www.mdpi.com/2079-9292/13/16/3204},
    ISSN = {2079-9292},
    DOI = {10.3390/electronics13163204}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

light_recurrent_unit_pytorch-0.0.7.tar.gz (1.0 MB view details)

Uploaded Source

Built Distribution

File details

Details for the file light_recurrent_unit_pytorch-0.0.7.tar.gz.

File metadata

File hashes

Hashes for light_recurrent_unit_pytorch-0.0.7.tar.gz
Algorithm Hash digest
SHA256 753b563fb35bd886e560cd8721239a689f6ee2103dde647b55ef9e44cd2db0af
MD5 ab1e22e9e0ebcba2eec973a935bf1d64
BLAKE2b-256 54fbc90c115bdadada22febc620c55574b00df4c59691fc9d84fd96819ea7a01

See more details on using hashes here.

File details

Details for the file light_recurrent_unit_pytorch-0.0.7-py3-none-any.whl.

File metadata

File hashes

Hashes for light_recurrent_unit_pytorch-0.0.7-py3-none-any.whl
Algorithm Hash digest
SHA256 1f0e1a961fa325d8478ed28814a502fe51ca3495776884205fef37573e841923
MD5 a7a21e75199eecc233a6a9acc85eeece
BLAKE2b-256 42c2506ab12aed8c081109ce660a07bec343e56d6649f19c3da05a5ea72b462c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page