Skip to main content

Light Recurrent Unit

Project description

Light Recurrent Unit - Pytorch

Implementation of the Light Recurrent Unit in Pytorch

Install

$ pip install light-recurrent-unit-pytorch

Usage

import torch
from light_recurrent_unit_pytorch import LightRecurrentUnitCell

cell = LightRecurrentUnitCell(256)

x = torch.randn(2, 256)
hidden = torch.randn(2, 256)

next_hidden = cell(x, hidden) # (2, 256)

Single layer

import torch
from light_recurrent_unit_pytorch import LightRecurrentUnitLayer

layer = LightRecurrentUnitLayer(256)

x = torch.randn(2, 1024, 256)

out = layer(x) # (2, 1024, 256)

assert out.shape == x.shape

Stacked

import torch
from light_recurrent_unit_pytorch import LightRecurrentUnit

lru = LightRecurrentUnit(256, depth = 4)

x = torch.randn(2, 1024, 256)

out, layer_hiddens = lru(x) # (2, 1024, 256), List[(2, 256)]

assert out.shape == x.shape

Citations

@Article{electronics13163204,
    AUTHOR = {Ye, Hong and Zhang, Yibing and Liu, Huizhou and Li, Xuannong and Chang, Jiaming and Zheng, Hui},
    TITLE = {Light Recurrent Unit: Towards an Interpretable Recurrent Neural Network for Modeling Long-Range Dependency},
    JOURNAL = {Electronics},
    VOLUME = {13},
    YEAR = {2024},
    NUMBER = {16},
    ARTICLE-NUMBER = {3204},
    URL = {https://www.mdpi.com/2079-9292/13/16/3204},
    ISSN = {2079-9292},
    DOI = {10.3390/electronics13163204}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

light_recurrent_unit_pytorch-0.1.0.tar.gz (1.0 MB view details)

Uploaded Source

Built Distribution

File details

Details for the file light_recurrent_unit_pytorch-0.1.0.tar.gz.

File metadata

File hashes

Hashes for light_recurrent_unit_pytorch-0.1.0.tar.gz
Algorithm Hash digest
SHA256 5aad109529c81241eb02cdd164d17ba48ef4f9132649c23a5601131c7689e141
MD5 49c29d7da8ff5bfd94793767a1759619
BLAKE2b-256 7052a16cfd92019f74fa74ce1565b2f4b6600164ba07b2eea0bbaee7ef89c3a9

See more details on using hashes here.

File details

Details for the file light_recurrent_unit_pytorch-0.1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for light_recurrent_unit_pytorch-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 d970ee628d4852b440800da0e35af1fd82659aa87f78c9a69070a7497d5c65c9
MD5 f1351006c96a1f2d6dedd5a6b92401ef
BLAKE2b-256 b532cfab78e32c0f066de84be677274673200a43f5abca994f6a734202218112

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page