Skip to main content

Tools for auditing WAFS

Project description

# LightBulb
LightBulb is an open source python framework for auditing web application firewalls and filters.

<p align="center">
<img src="https://lightbulb-framework.github.io/assets/images/logo5full.png" height="400">
</p>

## Synopsis

The framework consists of two main algorithms:

* **GOFA**: An active learning algorithm that infers symbolic representations of automata in the standard membership/equivalence query model.

Active learning algorithms permits the analysis of filter and sanitizer programs remotely, i.e. given only the ability to query the targeted program and observe the output.

* **SFADiff**: A black-box differential testing algorithm based on Symbolic Finite Automata (SFA) learning

Finding differences between programs with similar functionality is an important security problem as such differences can be used for fingerprinting or creating evasion attacks against security software like Web Application Firewalls (WAFs) which are designed to detect malicious inputs to web applications.

## Motivation

Web Applications Firewalls (WAFs) are fundamental building blocks of modern application security. For example, the PCI standard for organizations handling credit card transactions dictates that any application facing the internet should be either protected by a WAF or successfully pass a code review process. Nevertheless, despite their popularity and importance, auditing web application firewalls remains a challenging and complex task. Finding attacks that bypass the firewall usually requires expert domain knowledge for a specific vulnerability class. Thus, penetration testers not armed with this knowledge are left with publicly available lists of attack strings, like the XSS Cheat Sheet, which are usually insufficient for thoroughly evaluating the security of a WAF product.

## BlackHat Europe 2016 Presentation

In this presentation we introduce a novel, efficient, approach for bypassing WAFs using automata learning algorithms. We show that automata learning algorithms can be used to obtain useful models of WAFs. Given such a model, we show how to construct, either manually or automatically, a grammar describing the set of possible attacks which are then tested against the obtained model for the firewall. Moreover, if our system fails to find an attack, a regular expression model of the firewall is generated for further analysis. Using this technique we found over 10 previously unknown vulnerabilities in popular WAFs such as Mod-Security, PHPIDS and Expose allowing us to mount SQL Injection and XSS attacks bypassing the firewalls. Finally, we present LightBulb, an open source python framework for auditing web applications firewalls using the techniques described above. In the release we include the set of grammars used to find the vulnerabilities presented.

[![BHEU16 Presentation](http://image.slidesharecdn.com/anotherbrick-161109104820/85/another-brick-off-the-wall-deconstructing-web-application-firewalls-using-automata-learning-1-320.jpg)](http://www.slideshare.net/einstais/another-brick-off-the-wall-deconstructing-web-application-firewalls-using-automata-learning)

## Commands Usage

Main interface commands:

Command | Description
------------- | -------------------------------------
core | Shows available core modules
utils | Shows available query handlers
info \<module\> | Prints module information
library | Enters library
modules | Shows available application modules
use \<module\> | Enters module
start \<moduleA\> \<moduleB\> | Initiate algorithm
help | Prints help
status | Checks and installs required packages
complete | Prints bash completion command

Module commands:

Command | Description
------------- | -------------------------------------
back | Go back to main menu
info | Prints current module information
library | Enters library
options | Shows available options
define \<option\> \<value\> | Set an option value
start | Initiate algoritm
complete | Prints bash completion command

Library commands:

Command | Description
------------- | -------------------------------------
back | Go back to main menu
info \<folder\\module\> | Prints requested module information (folder must be located in lightbulb/data/)
cat \<folder\\module\> | Prints requested module (folder must be located in lightbulb/data/)
modules \<folder\> | Shows available library modules in the requested folder (folder must be located in lightbulb/data/)
search \<keywords\> | Searches available library modules using comma separated keywords
complete | Prints bash completion command

## Installation

### Prepare your system

First you have to verify that your system supports flex, python dev, pip and build utilities:

For apt platforms (ubuntu, debian...):
```bash
sudo apt-get install flex
sudo apt-get install python-pip
sudo apt-get install python-dev
sudo apt-get install build-essential
```

(Optional for apt) If you want to add support for MySQL testing:
```bash
sudo apt-get install libmysqlclient-dev
```

For yum platforms (centos, redhat, fedora...) with already installed the extra packages repo (epel-release):
```bash
sudo yum install -y python-pip
sudo yum install -y python-devel
sudo yum install -y wget
sudo yum groupinstall -y 'Development Tools'
```

(Optional for yum) If you want to add support for MySQL testing:
```bash
sudo yum install -y mysql-devel
sudo yum install -y MySQL-python
```

### Install Lightbulb

In order to use the application without complete package installation:

```bash
git clone https://github.com/lightbulb-framework/lightbulb-framework
cd lightbulb-framework
make
lightbulb status
```

In order to perform complete package installation. You can also install it from pip repository. This requires first to install the latest setuptools version:

```bash
pip install setuptools --upgrade
pip install lightbulb-framework
lightbulb status
```

If you want to use virtualenv:

```bash
pip install virtualenv
virtualenv env
source env/bin/activate
pip install lightbulb-framework
lightbulb status
```

The "lightbulb status" command will guide you to install MySQLdb and OpenFst support. If you use virtualenv in linux, the "sudo" command will be required only for the installation of libmysqlclient-dev package.

It should be noted that the "lightbulb status" command is not necessary if you are going to use the Burp Extension. The reason is that this command installs the "openfst" and "mysql" bindings and the extension by default is using Jython, which does not support C bindings. It is recommended to use the command only if you want to change the Burp extension configuration from the settings and enable the native support.

It is also possible to use a docker instance:

```bash
docker pull lightbulb/lightbulb-framework
```

[![LightBulb Installation on Debian Linux](https://j.gifs.com/O75xWL.gif)](https://www.youtube.com/watch?v=jjw32Jc744g)


## Install Burp Extension

If you wish to use the new GUI, you can use the extension for the [Burp Suite](https://portswigger.net/burp/). First you have to setup a working environment with Burp Proxy and Jython

* Download the latest Jython from [here](http://www.jython.org/downloads.html)
* Find your local python packages installation folder*
* Configure Burp Extender to use these values, as shown below*

<img src="https://lightbulb-framework.github.io/assets/images/burp_jython_python.png" width="300">

* Select the new LightBulb module ("BurpExtension.py") and set the extension type to be "Python"

<img src="https://lightbulb-framework.github.io/assets/images/burp_extension.png" width="600">

*You can ignore this step, and install the standalone version which contains all the required python packages included. You can download it [here](https://github.com/lightbulb-framework/lightbulb-framework/files/2079793/lightbulb-framework.zip)

## Examples

Check out the [Wiki page](https://github.com/lightbulb-framework/lightbulb-framework/wiki) for usage examples.

## Contributors

* George Argyros
* Ioannis Stais
* Suman Jana
* Angelos D. Keromytis
* Aggelos Kiayias

## References

* *G. Argyros, I. Stais, S. Jana, A. D. Keromytis, and A. Kiayias. 2016. SFADiff: Automated Evasion Attacks and Fingerprinting Using Black-box Differential Automata Learning. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security (CCS '16). ACM, New York, NY, USA, 1690-1701. doi: 10.1145/2976749.2978383*
* *G. Argyros, I. Stais, A. Kiayias and A. D. Keromytis, "Back in Black: Towards Formal, Black Box Analysis of Sanitizers and Filters," 2016 IEEE Symposium on Security and Privacy (SP), San Jose, CA, 2016, pp. 91-109. doi: 10.1109/SP.2016.14*

## Acknowledgements

This research was partly supported by ERC project CODAMODA, #259152.

## License

MIT License as described in LICENSE file

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

lightbulb-framework-0.0.18.tar.gz (244.6 kB view details)

Uploaded Source

File details

Details for the file lightbulb-framework-0.0.18.tar.gz.

File metadata

File hashes

Hashes for lightbulb-framework-0.0.18.tar.gz
Algorithm Hash digest
SHA256 1cdb5163cf8936bfc43496e978e6de51f3dfa35a1265184bc64d2a0882782104
MD5 c23686b4bb5297ca9a025eb9dc95c8aa
BLAKE2b-256 ed64f491d9c624282c60d0a9d457d51a7966a1435ebc808ce86310b67d6a0bec

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page