Skip to main content

LightFM recommendation model

Project description

LightFM

LightFM logo

Build status
Linux Circle CI
OSX (OpenMP disabled) Travis CI
Windows (OpenMP disabled) Appveyor

Gitter chat PyPI Anaconda-Server Badge

LightFM is a Python implementation of a number of popular recommendation algorithms for both implicit and explicit feedback, including efficient implementation of BPR and WARP ranking losses. It's easy to use, fast (via multithreaded model estimation), and produces high quality results.

It also makes it possible to incorporate both item and user metadata into the traditional matrix factorization algorithms. It represents each user and item as the sum of the latent representations of their features, thus allowing recommendations to generalise to new items (via item features) and to new users (via user features).

For more details, see the Documentation.

Need help? Contact me via email, Twitter, or Gitter.

Installation

Install from pip:

pip install lightfm

or Conda:

conda install -c conda-forge lightfm

Quickstart

Fitting an implicit feedback model on the MovieLens 100k dataset is very easy:

from lightfm import LightFM
from lightfm.datasets import fetch_movielens
from lightfm.evaluation import precision_at_k

# Load the MovieLens 100k dataset. Only five
# star ratings are treated as positive.
data = fetch_movielens(min_rating=5.0)

# Instantiate and train the model
model = LightFM(loss='warp')
model.fit(data['train'], epochs=30, num_threads=2)

# Evaluate the trained model
test_precision = precision_at_k(model, data['test'], k=5).mean()

Articles and tutorials on using LightFM

  1. Learning to Rank Sketchfab Models with LightFM
  2. Metadata Embeddings for User and Item Cold-start Recommendations
  3. Recommendation Systems - Learn Python for Data Science
  4. Using LightFM to Recommend Projects to Consultants

How to cite

Please cite LightFM if it helps your research. You can use the following BibTeX entry:

@inproceedings{DBLP:conf/recsys/Kula15,
  author    = {Maciej Kula},
  editor    = {Toine Bogers and
               Marijn Koolen},
  title     = {Metadata Embeddings for User and Item Cold-start Recommendations},
  booktitle = {Proceedings of the 2nd Workshop on New Trends on Content-Based Recommender
               Systems co-located with 9th {ACM} Conference on Recommender Systems
               (RecSys 2015), Vienna, Austria, September 16-20, 2015.},
  series    = {{CEUR} Workshop Proceedings},
  volume    = {1448},
  pages     = {14--21},
  publisher = {CEUR-WS.org},
  year      = {2015},
  url       = {http://ceur-ws.org/Vol-1448/paper4.pdf},
}

Development

Pull requests are welcome. To install for development:

  1. Clone the repository: git clone git@github.com:lyst/lightfm.git
  2. Setup a virtual environment: cd lightfm && python3 -m venv venv && source ./venv/bin/activate
  3. Install it for development using pip: pip install -e . && pip install -r test-requirements.txt
  4. You can run tests by running ./venv/bin/py.test tests.
  5. LightFM uses black to enforce code formatting and flake8 for linting, see lint-requirements.txt.
  6. [Optional]: You can install pre-commit to locally enfore formatting and linting. Install with:
    pip install pre-commit
    pre-commit install
    

When making changes to the .pyx extension files, you'll need to run python setup.py cythonize in order to produce the extension .c files before running pip install -e ..

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

lightfm-1.17.tar.gz (316.4 kB view details)

Uploaded Source

File details

Details for the file lightfm-1.17.tar.gz.

File metadata

  • Download URL: lightfm-1.17.tar.gz
  • Upload date:
  • Size: 316.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.2

File hashes

Hashes for lightfm-1.17.tar.gz
Algorithm Hash digest
SHA256 2b77ada182ccd768a8d7643ab3cfcd8b6e855db09087f7cc7329bd63316697a8
MD5 c714b5e83d4f25156ff1b8c89a49e2e6
BLAKE2b-256 1f965ec230f5c27811534af0faaa8525f11c1000ee1c24c8a82c0546d0724aea

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page