Skip to main content

A collection of LightGBM callbacks.

Project description

LightGBM Callbacks

CI Status Documentation Status Test coverage percentage

Poetry black pre-commit

PyPI Version Supported Python versions License

A collection of LightGBM callbacks. Provides implementations of ProgressBarCallback (#5867) and DartEarlyStoppingCallback (#4805), as well as an LGBMDartEarlyStoppingEstimator that automatically passes these callbacks. (#3313, #5808)

Installation

Install this via pip (or your favourite package manager):

pip install lightgbm-callbacks

Usage

SciKit-Learn API, simple

from lightgbm import LGBMRegressor
from lightgbm_callbacks import LGBMDartEarlyStoppingEstimator
from sklearn.datasets import load_diabetes
from sklearn.model_selection import train_test_split

X, y = load_diabetes(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y)
LGBMDartEarlyStoppingEstimator(
    LGBMRegressor(boosting_type="dart"), # or "gbdt", ...
    stopping_rounds=10, # or n_iter_no_change=10
    test_size=0.2, # or validation_fraction=0.2
    shuffle=False,
    tqdm_cls="rich", # "auto", "autonotebook", ...
).fit(X_train, y_train)

Scikit-Learn API, manually passing callbacks

from lightgbm import LGBMRegressor
from lightgbm_callbacks import ProgressBarCallback, DartEarlyStoppingCallback
from sklearn.datasets import load_diabetes
from sklearn.model_selection import train_test_split

X, y = load_diabetes(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y)
X_train, X_val, y_train, y_val = train_test_split(X_train, y_train)
early_stopping_callback = DartEarlyStoppingCallback(stopping_rounds=10)
LGBMRegressor(
).fit(
    X_train,
    y_train,
    eval_set=[(X_train, y_train), (X_val, y_val)],
    callbacks=[
        early_stopping_callback,
        ProgressBarCallback(early_stopping_callback=early_stopping_callback),
    ],
)

Details on DartEarlyStoppingCallback

Below is a description of the DartEarlyStoppingCallback method parameter and lgb.plot_metric for each lgb.LGBMRegressor(boosting_type="dart", n_estimators=1000) trained with entire sklearn_datasets.load_diabetes() dataset.

Method Description iteration Image Actual iteration
(Baseline) If Early stopping is not used. n_estimators image 1000
"none" Do nothing and return the original estimator. min(best_iteration + early_stopping_rounds, n_estimators) image 50
"save" Save the best model by deepcopying the estimator and return the best model (using pickle). min(best_iteration + 1, n_estimators) image 21
"refit" Refit the estimator with the best iteration and return the refitted estimator. min(best_iteration, n_estimators) image 20

Contributors ✨

Thanks goes to these wonderful people (emoji key):

34j
34j

💻 🤔 📖

This project follows the all-contributors specification. Contributions of any kind welcome!

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

lightgbm_callbacks-0.1.13.tar.gz (15.8 kB view details)

Uploaded Source

Built Distribution

lightgbm_callbacks-0.1.13-py3-none-any.whl (16.1 kB view details)

Uploaded Python 3

File details

Details for the file lightgbm_callbacks-0.1.13.tar.gz.

File metadata

  • Download URL: lightgbm_callbacks-0.1.13.tar.gz
  • Upload date:
  • Size: 15.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.11.2 readme-renderer/44.0 requests/2.32.3 requests-toolbelt/1.0.0 urllib3/2.2.3 tqdm/4.66.6 importlib-metadata/8.5.0 keyring/25.5.0 rfc3986/2.0.0 colorama/0.4.6 CPython/3.10.15

File hashes

Hashes for lightgbm_callbacks-0.1.13.tar.gz
Algorithm Hash digest
SHA256 79bd1ab0abfa172df6fdde69a5f3bcf742e7afb9e3ae23d70b5f59c3c961aa6d
MD5 2dc6b409dc1ebf240b471dd84c0d1845
BLAKE2b-256 dedd100c06b5346b92dbe8c750f8fe611cfc434b9c7538a326cf15e0890743ff

See more details on using hashes here.

File details

Details for the file lightgbm_callbacks-0.1.13-py3-none-any.whl.

File metadata

  • Download URL: lightgbm_callbacks-0.1.13-py3-none-any.whl
  • Upload date:
  • Size: 16.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.11.2 readme-renderer/44.0 requests/2.32.3 requests-toolbelt/1.0.0 urllib3/2.2.3 tqdm/4.66.6 importlib-metadata/8.5.0 keyring/25.5.0 rfc3986/2.0.0 colorama/0.4.6 CPython/3.10.15

File hashes

Hashes for lightgbm_callbacks-0.1.13-py3-none-any.whl
Algorithm Hash digest
SHA256 938a9ae6948f856d3dc1c5e4095a761a18d8a50f53ce8246bcf7bd6f577e3779
MD5 abdaf6989f8596672696ba69b15ccce0
BLAKE2b-256 be74f48bd932ab1c0d7f5f2a4f8487c08214a60950e68c9929c4c5e9f16282fd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page