Efficient Large-Scale Distributed Training with Colossal-AI and Lightning AI.
Project description
Lightning ⚡ Colossal-AI
Efficient Large-Scale Distributed Training with Colossal-AI and Lightning AI
Installation
pip install -U lightning-colossalai
Usage
Simply set the strategy argument in the Trainer:
import lightning as L
trainer = L.Trainer(strategy="colossalai", precision="16-mixed", devices=...)
For more fine-grained tuning of Colossal-AI's parameters, pass the strategy object to the Trainer:
import lightning as L
from lightning_colossalai import ColossalAIStrategy
strategy = ColossalAIStrategy(...)
trainer = L.Trainer(strategy=strategy, precision="16-mixed", devices=...)
Find all configuration options in the docs!
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
lightning-colossalai-0.1.0.tar.gz
(15.9 kB
view hashes)
Built Distribution
Close
Hashes for lightning-colossalai-0.1.0.tar.gz
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3e483405012aea6ef8c1d7b9dd04c227dc45ad331f374e6ff3c0ff185f9aaedf |
|
MD5 | 584d585fc2842b83e5311b2273dd9b84 |
|
BLAKE2b-256 | 2d5b59fdfecd68ad119ec923bac3451956239ca403774541e443eda2a2718377 |
Close
Hashes for lightning_colossalai-0.1.0-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 46783c408f52747517a4c28424f03fa3813c5d7accc5aa7d1fed1aac955122a4 |
|
MD5 | 27446c835955d9fe8c2a2e8cb57b957e |
|
BLAKE2b-256 | dc148cb492a6ed13a6712d2ccf01aba4250332d0cdf23835299e6394bdfd5b60 |