Skip to main content

Use Lightning Apps to build everything from production-ready, multi-cloud ML systems to simple research demos.

Project description

NEWS: PyTorch Lightning has been renamed Lightning!

The Deep Learning framework to train, deploy, and ship AI products Lightning fast.


Lightning GalleryKey FeaturesHow To UseDocsExamplesCommunityContributeLicense

PyPI - Python Version PyPI Status PyPI Status Conda DockerHub codecov

ReadTheDocs Slack license

*Codecov is > 90%+ but build delays may show less

PyTorch Lightning is just organized PyTorch

Lightning disentangles PyTorch code to decouple the science from the engineering. PT to PL

Build AI products with Lightning Apps

Once you're done building models, publish a paper demo or build a full production end-to-end ML system with Lightning Apps. Lightning Apps remove the cloud infrastructure boilerplate so you can focus on solving the research or business problems. Lightning Apps can run on the Lightning Cloud, your own cluster or a private cloud.

Browse available Lightning apps here

Learn more about Lightning Apps


Lightning Design Philosophy

Lightning structures PyTorch code with these principles:

Lightning forces the following structure to your code which makes it reusable and shareable:

  • Research code (the LightningModule).
  • Engineering code (you delete, and is handled by the Trainer).
  • Non-essential research code (logging, etc... this goes in Callbacks).
  • Data (use PyTorch DataLoaders or organize them into a LightningDataModule).

Once you do this, you can train on multiple-GPUs, TPUs, CPUs and even in 16-bit precision without changing your code!

Get started in just 15 minutes


Continuous Integration

Lightning is rigorously tested across multiple CPUs, GPUs, TPUs, IPUs, and HPUs and against major Python and PyTorch versions.

Current build statuses
System / PyTorch ver. 1.10 1.12
Linux py3.7 [GPUs**] - -
Linux py3.7 [TPUs***] - -
Linux py3.8 [IPUs] - -
Linux py3.8 [HPUs] Build Status -
Linux py3.{7,9} - Test
OSX py3.{7,9} - Test
Windows py3.{7,9} - Test
  • ** tests run on two NVIDIA P100
  • *** tests run on Google GKE TPUv2/3. TPU py3.7 means we support Colab and Kaggle env.

How To Use

Step 0: Install

Simple installation from PyPI

pip install pytorch-lightning

Step 1: Add these imports

import os
import torch
from torch import nn
import torch.nn.functional as F
from torchvision.datasets import MNIST
from torch.utils.data import DataLoader, random_split
from torchvision import transforms
import pytorch_lightning as pl

Step 2: Define a LightningModule (nn.Module subclass)

A LightningModule defines a full system (ie: a GAN, autoencoder, BERT or a simple Image Classifier).

class LitAutoEncoder(pl.LightningModule):
    def __init__(self):
        super().__init__()
        self.encoder = nn.Sequential(nn.Linear(28 * 28, 128), nn.ReLU(), nn.Linear(128, 3))
        self.decoder = nn.Sequential(nn.Linear(3, 128), nn.ReLU(), nn.Linear(128, 28 * 28))

    def forward(self, x):
        # in lightning, forward defines the prediction/inference actions
        embedding = self.encoder(x)
        return embedding

    def training_step(self, batch, batch_idx):
        # training_step defines the train loop. It is independent of forward
        x, y = batch
        x = x.view(x.size(0), -1)
        z = self.encoder(x)
        x_hat = self.decoder(z)
        loss = F.mse_loss(x_hat, x)
        self.log("train_loss", loss)
        return loss

    def configure_optimizers(self):
        optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)
        return optimizer

Note: Training_step defines the training loop. Forward defines how the LightningModule behaves during inference/prediction.

Step 3: Train!

dataset = MNIST(os.getcwd(), download=True, transform=transforms.ToTensor())
train, val = random_split(dataset, [55000, 5000])

autoencoder = LitAutoEncoder()
trainer = pl.Trainer()
trainer.fit(autoencoder, DataLoader(train), DataLoader(val))

Advanced features

Lightning has over 40+ advanced features designed for professional AI research at scale.

Here are some examples:

Highlighted feature code snippets
# 8 GPUs
# no code changes needed
trainer = Trainer(max_epochs=1, accelerator="gpu", devices=8)

# 256 GPUs
trainer = Trainer(max_epochs=1, accelerator="gpu", devices=8, num_nodes=32)
Train on TPUs without code changes
# no code changes needed
trainer = Trainer(accelerator="tpu", devices=8)
16-bit precision
# no code changes needed
trainer = Trainer(precision=16)
Experiment managers
from pytorch_lightning import loggers

# tensorboard
trainer = Trainer(logger=TensorBoardLogger("logs/"))

# weights and biases
trainer = Trainer(logger=loggers.WandbLogger())

# comet
trainer = Trainer(logger=loggers.CometLogger())

# mlflow
trainer = Trainer(logger=loggers.MLFlowLogger())

# neptune
trainer = Trainer(logger=loggers.NeptuneLogger())

# ... and dozens more
EarlyStopping
es = EarlyStopping(monitor="val_loss")
trainer = Trainer(callbacks=[es])
Checkpointing
checkpointing = ModelCheckpoint(monitor="val_loss")
trainer = Trainer(callbacks=[checkpointing])
Export to torchscript (JIT) (production use)
# torchscript
autoencoder = LitAutoEncoder()
torch.jit.save(autoencoder.to_torchscript(), "model.pt")
Export to ONNX (production use)
# onnx
with tempfile.NamedTemporaryFile(suffix=".onnx", delete=False) as tmpfile:
    autoencoder = LitAutoEncoder()
    input_sample = torch.randn((1, 64))
    autoencoder.to_onnx(tmpfile.name, input_sample, export_params=True)
    os.path.isfile(tmpfile.name)

Pro-level control of training loops (advanced users)

For complex/professional level work, you have optional full control of the training loop and optimizers.

class LitAutoEncoder(pl.LightningModule):
    def __init__(self):
        super().__init__()
        self.automatic_optimization = False

    def training_step(self, batch, batch_idx):
        # access your optimizers with use_pl_optimizer=False. Default is True
        opt_a, opt_b = self.optimizers(use_pl_optimizer=True)

        loss_a = ...
        self.manual_backward(loss_a, opt_a)
        opt_a.step()
        opt_a.zero_grad()

        loss_b = ...
        self.manual_backward(loss_b, opt_b, retain_graph=True)
        self.manual_backward(loss_b, opt_b)
        opt_b.step()
        opt_b.zero_grad()

Advantages over unstructured PyTorch

  • Models become hardware agnostic
  • Code is clear to read because engineering code is abstracted away
  • Easier to reproduce
  • Make fewer mistakes because lightning handles the tricky engineering
  • Keeps all the flexibility (LightningModules are still PyTorch modules), but removes a ton of boilerplate
  • Lightning has dozens of integrations with popular machine learning tools.
  • Tested rigorously with every new PR. We test every combination of PyTorch and Python supported versions, every OS, multi GPUs and even TPUs.
  • Minimal running speed overhead (about 300 ms per epoch compared with pure PyTorch).

Examples

Self-supervised Learning
Convolutional Architectures
Reinforcement Learning
GANs
Classic ML

Community

The lightning community is maintained by

  • 10+ core contributors who are all a mix of professional engineers, Research Scientists, and Ph.D. students from top AI labs.
  • 590+ active community contributors.

Want to help us build Lightning and reduce boilerplate for thousands of researchers? Learn how to make your first contribution here

Lightning is also part of the PyTorch ecosystem which requires projects to have solid testing, documentation and support.

Asking for help

If you have any questions please:

  1. Read the docs.
  2. Search through existing Discussions, or add a new question
  3. Join our slack.

Project details


Release history Release notifications | RSS feed

This version

1.9.4

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

lightning-1.9.4.tar.gz (1.8 MB view details)

Uploaded Source

Built Distribution

lightning-1.9.4-py3-none-any.whl (2.1 MB view details)

Uploaded Python 3

File details

Details for the file lightning-1.9.4.tar.gz.

File metadata

  • Download URL: lightning-1.9.4.tar.gz
  • Upload date:
  • Size: 1.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for lightning-1.9.4.tar.gz
Algorithm Hash digest
SHA256 842d81c48ed0684d2e33b4d815794f9c3b2adb3916446ed12556dfeb3952e721
MD5 58b66d72fc55a71b3747c5ae2a4287dd
BLAKE2b-256 1f20af3c14c24e55c847e5edac6f8b94b6fbaa18d66e748141ad9adb8502a7d5

See more details on using hashes here.

File details

Details for the file lightning-1.9.4-py3-none-any.whl.

File metadata

  • Download URL: lightning-1.9.4-py3-none-any.whl
  • Upload date:
  • Size: 2.1 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for lightning-1.9.4-py3-none-any.whl
Algorithm Hash digest
SHA256 992315f3069c30737a7eb42f46d7da70db6eca4fb279a3d45a2f8a9a6ff09dc1
MD5 e74e4ffa23c450cb23f54ca8b6f3500e
BLAKE2b-256 e706656b39b6c1184e6e5aed60ed939d4618dc31d56ba932354bd4f4e3e02090

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page