Skip to main content

Python framework for TradingView's Lightweight Charts JavaScript library.

Project description

lightweight-charts-python

PyPi Release Made with Python License Documentation

cover

lightweight-charts-python aims to provide a simple and pythonic way to access and implement TradingView's Lightweight Charts.

Installation

pip install lightweight-charts
  • White screen? Having issues with pywebview? Click here.

Features

  1. Simple and easy to use.
  2. Blocking or non-blocking GUI.
  3. Streamlined for live data, with methods for updating directly from tick data.
  4. Multi-Pane Charts using the SubChart.
  5. The Toolbox, allowing for trendlines, rays and horizontal lines to be drawn directly onto charts.
  6. Callbacks allowing for timeframe (1min, 5min, 30min etc.) selectors, searching, and more.
  7. Direct integration of market data through Polygon.io's market data API.

Supports: Jupyter Notebooks, PyQt, wxPython, Streamlit, and asyncio.

PartTimeLarry: Interactive Brokers API and TradingView Charts in Python


1. Display data from a csv:

import pandas as pd
from lightweight_charts import Chart


if __name__ == '__main__':
    
    chart = Chart()
    
    # Columns: | time | open | high | low | close | volume (if volume is enabled) |
    df = pd.read_csv('ohlcv.csv')
    chart.set(df)
    
    chart.show(block=True)

setting_data image


2. Updating bars in real-time:

import pandas as pd
from time import sleep
from lightweight_charts import Chart

if __name__ == '__main__':

    chart = Chart()

    df1 = pd.read_csv('ohlcv.csv')
    df2 = pd.read_csv('next_ohlcv.csv')

    chart.set(df1)

    chart.show()

    last_close = df1.iloc[-1]
    
    for i, series in df2.iterrows():
        chart.update(series)

        if series['close'] > 20 and last_close < 20:
            chart.marker(text='The price crossed $20!')
            
        last_close = series['close']
        sleep(0.1)

live data gif


3. Updating bars from tick data in real-time:

import pandas as pd
from time import sleep
from lightweight_charts import Chart


if __name__ == '__main__':
    
    df1 = pd.read_csv('ohlc.csv')
    
    # Columns: | time | price | volume (if volume is enabled) |
    df2 = pd.read_csv('ticks.csv')
    
    chart = Chart(volume_enabled=False)
    
    chart.set(df1)
    
    chart.show()
    
    for i, tick in df2.iterrows():
        chart.update_from_tick(tick)
            
        sleep(0.3)

tick data gif


4. Line Indicators:

import pandas as pd
from lightweight_charts import Chart


def calculate_sma(data: pd.DataFrame, period: int = 50):
   def avg(d: pd.DataFrame):
      return d['close'].mean()

   result = []
   for i in range(period - 1, len(data)):
      val = avg(data.iloc[i - period + 1:i])
      result.append({'time': data.iloc[i]['date'], f'SMA {period}': val})
   return pd.DataFrame(result)


if __name__ == '__main__':
   chart = Chart()
   chart.legend(visible=True)
   
   df = pd.read_csv('ohlcv.csv')
   chart.set(df)

   line = chart.create_line()
   sma_data = calculate_sma(df, period=50)
   line.set(sma_data, name='SMA 50')

   chart.show(block=True)

line indicators image


5. Styling:

import pandas as pd
from lightweight_charts import Chart


if __name__ == '__main__':
    
    chart = Chart(debug=True)

    df = pd.read_csv('ohlcv.csv')

    chart.layout(background_color='#090008', text_color='#FFFFFF', font_size=16,
                 font_family='Helvetica')

    chart.candle_style(up_color='#00ff55', down_color='#ed4807',
                       border_up_color='#FFFFFF', border_down_color='#FFFFFF',
                       wick_up_color='#FFFFFF', wick_down_color='#FFFFFF')

    chart.volume_config(up_color='#00ff55', down_color='#ed4807')

    chart.watermark('1D', color='rgba(180, 180, 240, 0.7)')

    chart.crosshair(mode='normal', vert_color='#FFFFFF', vert_style='dotted',
                    horz_color='#FFFFFF', horz_style='dotted')

    chart.legend(visible=True, font_size=14)

    chart.set(df)

    chart.show(block=True)

styling image


6. Callbacks:

import asyncio
import pandas as pd

from lightweight_charts import Chart


def get_bar_data(symbol, timeframe):
    if symbol not in ('AAPL', 'GOOGL', 'TSLA'):
        print(f'No data for "{symbol}"')
        return pd.DataFrame()
    return pd.read_csv(f'bar_data/{symbol}_{timeframe}.csv')


class API:
    def __init__(self):
        self.chart = None  # Changes after each callback.

    async def on_search(self, searched_string):  # Called when the user searches.
        new_data = get_bar_data(searched_string, self.chart.topbar['timeframe'].value)
        if new_data.empty:
            return
        self.chart.topbar['corner'].set(searched_string)
        self.chart.set(new_data)

    async def on_timeframe_selection(self):  # Called when the user changes the timeframe.
        new_data = get_bar_data(self.chart.topbar['corner'].value, self.chart.topbar['timeframe'].value)
        if new_data.empty:
            return
        self.chart.set(new_data)
            
    async def on_horizontal_line_move(self, line_id, price):
        print(f'Horizontal line moved to: {price}')


async def main():
    api = API()

    chart = Chart(api=api, topbar=True, searchbox=True, toolbox=True)
    chart.legend(True)

    chart.topbar.textbox('corner', 'TSLA')
    chart.topbar.switcher('timeframe', api.on_timeframe_selection, '1min', '5min', '30min', default='5min')

    df = get_bar_data('TSLA', '5min')
    chart.set(df)
    
    chart.horizontal_line(200, interactive=True)

    await chart.show_async(block=True)


if __name__ == '__main__':
    asyncio.run(main())

callbacks gif


Documentation

Inquiries: shaders_worker_0e@icloud.com


This package is an independent creation and has not been endorsed, sponsored, or approved by TradingView. The author of this package does not have any official relationship with TradingView, and the package does not represent the views or opinions of TradingView.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

lightweight_charts-1.0.14.2.tar.gz (87.6 kB view details)

Uploaded Source

Built Distribution

lightweight_charts-1.0.14.2-py3-none-any.whl (88.7 kB view details)

Uploaded Python 3

File details

Details for the file lightweight_charts-1.0.14.2.tar.gz.

File metadata

  • Download URL: lightweight_charts-1.0.14.2.tar.gz
  • Upload date:
  • Size: 87.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.2

File hashes

Hashes for lightweight_charts-1.0.14.2.tar.gz
Algorithm Hash digest
SHA256 d28371c67e99f9d1575171434857b7fe885cd3e23ce2e3639b8fac1d6faa5ee8
MD5 7dab0b6dbae0e6e7e85e5fa7d15c1bb3
BLAKE2b-256 659c9b067645a1b93035abbcda91d1c3f18076993f2dab3072a6452256ef1c45

See more details on using hashes here.

File details

Details for the file lightweight_charts-1.0.14.2-py3-none-any.whl.

File metadata

File hashes

Hashes for lightweight_charts-1.0.14.2-py3-none-any.whl
Algorithm Hash digest
SHA256 4cfe323a7e7d57e9faec1954f21117d5180e20b1c63bd87d81bfdf4b0e40c887
MD5 14bfcebdfd782822c9f97b0ab76c773e
BLAKE2b-256 168190e69b53f58229713ab0afa45f9bb101dd93a97c41e7664e51fbb2c832b2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page