Skip to main content

Python framework for TradingView's Lightweight Charts JavaScript library.

Project description

lightweight-charts-python

PyPi Release Made with Python License Documentation

cover

lightweight-charts-python aims to provide a simple and pythonic way to access and implement TradingView's Lightweight Charts.

Installation

pip install lightweight-charts
  • White screen? Having issues with pywebview? Click here.

Features

  1. Simple and easy to use.
  2. Blocking or non-blocking GUI.
  3. Streamlined for live data, with methods for updating directly from tick data.
  4. Multi-Pane Charts using the SubChart.
  5. The Toolbox, allowing for trendlines, rays and horizontal lines to be drawn directly onto charts.
  6. Callbacks allowing for timeframe (1min, 5min, 30min etc.) selectors, searching, hotkeys, and more.
  7. Tables for watchlists, order entry, and trade management.
  8. Direct integration of market data through Polygon.io's market data API.

Supports: Jupyter Notebooks, PyQt, wxPython, Streamlit, and asyncio.

PartTimeLarry: Interactive Brokers API and TradingView Charts in Python


1. Display data from a csv:

import pandas as pd
from lightweight_charts import Chart


if __name__ == '__main__':
    
    chart = Chart()
    
    # Columns: | time | open | high | low | close | volume (if volume is enabled) |
    df = pd.read_csv('ohlcv.csv')
    chart.set(df)
    
    chart.show(block=True)

setting_data image


2. Updating bars in real-time:

import pandas as pd
from time import sleep
from lightweight_charts import Chart

if __name__ == '__main__':

    chart = Chart()

    df1 = pd.read_csv('ohlcv.csv')
    df2 = pd.read_csv('next_ohlcv.csv')

    chart.set(df1)

    chart.show()

    last_close = df1.iloc[-1]
    
    for i, series in df2.iterrows():
        chart.update(series)

        if series['close'] > 20 and last_close < 20:
            chart.marker(text='The price crossed $20!')
            
        last_close = series['close']
        sleep(0.1)

live data gif


3. Updating bars from tick data in real-time:

import pandas as pd
from time import sleep
from lightweight_charts import Chart


if __name__ == '__main__':
    
    df1 = pd.read_csv('ohlc.csv')
    
    # Columns: | time | price | volume (if volume is enabled) |
    df2 = pd.read_csv('ticks.csv')
    
    chart = Chart(volume_enabled=False)
    
    chart.set(df1)
    
    chart.show()
    
    for i, tick in df2.iterrows():
        chart.update_from_tick(tick)
            
        sleep(0.3)

tick data gif


4. Line Indicators:

import pandas as pd
from lightweight_charts import Chart


def calculate_sma(data: pd.DataFrame, period: int = 50):
   def avg(d: pd.DataFrame):
      return d['close'].mean()

   result = []
   for i in range(period - 1, len(data)):
      val = avg(data.iloc[i - period + 1:i])
      result.append({'time': data.iloc[i]['date'], f'SMA {period}': val})
   return pd.DataFrame(result)


if __name__ == '__main__':
   chart = Chart()
   chart.legend(visible=True)
   
   df = pd.read_csv('ohlcv.csv')
   chart.set(df)

   line = chart.create_line()
   sma_data = calculate_sma(df, period=50)
   line.set(sma_data, name='SMA 50')

   chart.show(block=True)

line indicators image


5. Styling:

import pandas as pd
from lightweight_charts import Chart


if __name__ == '__main__':
    
    chart = Chart(debug=True)

    df = pd.read_csv('ohlcv.csv')

    chart.layout(background_color='#090008', text_color='#FFFFFF', font_size=16,
                 font_family='Helvetica')

    chart.candle_style(up_color='#00ff55', down_color='#ed4807',
                       border_up_color='#FFFFFF', border_down_color='#FFFFFF',
                       wick_up_color='#FFFFFF', wick_down_color='#FFFFFF')

    chart.volume_config(up_color='#00ff55', down_color='#ed4807')

    chart.watermark('1D', color='rgba(180, 180, 240, 0.7)')

    chart.crosshair(mode='normal', vert_color='#FFFFFF', vert_style='dotted',
                    horz_color='#FFFFFF', horz_style='dotted')

    chart.legend(visible=True, font_size=14)

    chart.set(df)

    chart.show(block=True)

styling image


6. Callbacks:

import pandas as pd
from lightweight_charts import Chart


def get_bar_data(symbol, timeframe):
    if symbol not in ('AAPL', 'GOOGL', 'TSLA'):
        print(f'No data for "{symbol}"')
        return pd.DataFrame()
    return pd.read_csv(f'../examples/6_callbacks/bar_data/{symbol}_{timeframe}.csv')


class API:
    def __init__(self):
        self.chart = None  # Changes after each callback.

    def on_search(self, searched_string):  # Called when the user searches.
        new_data = get_bar_data(searched_string, self.chart.topbar['timeframe'].value)
        if new_data.empty:
            return
        self.chart.topbar['symbol'].set(searched_string)
        self.chart.set(new_data)

    def on_timeframe_selection(self):  # Called when the user changes the timeframe.
        new_data = get_bar_data(self.chart.topbar['symbol'].value, self.chart.topbar['timeframe'].value)
        if new_data.empty:
            return
        self.chart.set(new_data, True)

    def on_horizontal_line_move(self, line_id, price):
        print(f'Horizontal line moved to: {price}')


if __name__ == '__main__':
    api = API()

    chart = Chart(api=api, topbar=True, searchbox=True, toolbox=True)
    chart.legend(True)

    chart.topbar.textbox('symbol', 'TSLA')
    chart.topbar.switcher('timeframe', api.on_timeframe_selection, '1min', '5min', '30min', default='5min')

    df = get_bar_data('TSLA', '5min')
    chart.set(df)

    chart.horizontal_line(200, interactive=True)

    chart.show(block=True)

callbacks gif


Documentation

Inquiries: shaders_worker_0e@icloud.com


This package is an independent creation and has not been endorsed, sponsored, or approved by TradingView. The author of this package does not have any official relationship with TradingView, and the package does not represent the views or opinions of TradingView.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

lightweight_charts-1.0.15.tar.gz (90.8 kB view details)

Uploaded Source

Built Distribution

lightweight_charts-1.0.15-py3-none-any.whl (92.8 kB view details)

Uploaded Python 3

File details

Details for the file lightweight_charts-1.0.15.tar.gz.

File metadata

  • Download URL: lightweight_charts-1.0.15.tar.gz
  • Upload date:
  • Size: 90.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.2

File hashes

Hashes for lightweight_charts-1.0.15.tar.gz
Algorithm Hash digest
SHA256 30d1a88480fd8ee0e3604c1bbea2db35ac370982d471a54576d177cf52f1e8af
MD5 8f04d640104ffab731ad2c5c754afb04
BLAKE2b-256 a2f8ed2946ba89333f4267e2712d6e7ed2545a3c02798ee135d5ddc9965e1381

See more details on using hashes here.

File details

Details for the file lightweight_charts-1.0.15-py3-none-any.whl.

File metadata

File hashes

Hashes for lightweight_charts-1.0.15-py3-none-any.whl
Algorithm Hash digest
SHA256 0a77cebda6b7fdeaa97aa6330745a39ab9b658ea2dc333fb8ba47ef5418a9c13
MD5 a194bf257815f6090363efcefcd02ca0
BLAKE2b-256 52c800a778d8374d26d8ee680781a01c5a53624429447f173b38f21c708fa481

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page