Skip to main content

Python framework for TradingView's Lightweight Charts JavaScript library.

Project description

lightweight-charts-python

PyPi Release Made with Python License Documentation

cover

lightweight-charts-python aims to provide a simple and pythonic way to access and implement TradingView's Lightweight Charts.

Installation

pip install lightweight-charts

Features

  1. Streamlined for live data, with methods for updating directly from tick data.
  2. Multi-pane charts using Subcharts.
  3. The Toolbox, allowing for trendlines, rays and horizontal lines to be drawn directly onto charts.
  4. Events allowing for timeframe selectors (1min, 5min, 30min etc.), searching, hotkeys, and more.
  5. Tables for watchlists, order entry, and trade management.
  6. Direct integration of market data through Polygon.io's market data API.

Supports: Jupyter Notebooks, PyQt5, PySide6, wxPython, Streamlit, and asyncio.

PartTimeLarry: Interactive Brokers API and TradingView Charts in Python


1. Display data from a csv:

import pandas as pd
from lightweight_charts import Chart


if __name__ == '__main__':
    
    chart = Chart()
    
    # Columns: time | open | high | low | close | volume 
    df = pd.read_csv('ohlcv.csv')
    chart.set(df)
    
    chart.show(block=True)

setting_data image


2. Updating bars in real-time:

import pandas as pd
from time import sleep
from lightweight_charts import Chart

if __name__ == '__main__':

    chart = Chart()

    df1 = pd.read_csv('ohlcv.csv')
    df2 = pd.read_csv('next_ohlcv.csv')

    chart.set(df1)

    chart.show()

    last_close = df1.iloc[-1]
    
    for i, series in df2.iterrows():
        chart.update(series)

        if series['close'] > 20 and last_close < 20:
            chart.marker(text='The price crossed $20!')
            
        last_close = series['close']
        sleep(0.1)

live data gif


3. Updating bars from tick data in real-time:

import pandas as pd
from time import sleep
from lightweight_charts import Chart


if __name__ == '__main__':
    
    df1 = pd.read_csv('ohlc.csv')
    
    # Columns: time | price 
    df2 = pd.read_csv('ticks.csv')
    
    chart = Chart()
    
    chart.set(df1)
    
    chart.show()
    
    for i, tick in df2.iterrows():
        chart.update_from_tick(tick)
            
        sleep(0.03)

tick data gif


4. Line Indicators:

import pandas as pd
from lightweight_charts import Chart


def calculate_sma(df, period: int = 50):
    return pd.DataFrame({
        'time': df['date'],
        f'SMA {period}': df['close'].rolling(window=period).mean()
    }).dropna()


if __name__ == '__main__':
    chart = Chart()
    chart.legend(visible=True)

    df = pd.read_csv('ohlcv.csv')
    chart.set(df)

    line = chart.create_line('SMA 50')
    sma_data = calculate_sma(df, period=50)
    line.set(sma_data)

    chart.show(block=True)

line indicators image


5. Styling:

import pandas as pd
from lightweight_charts import Chart


if __name__ == '__main__':
    
    chart = Chart()

    df = pd.read_csv('ohlcv.csv')

    chart.layout(background_color='#090008', text_color='#FFFFFF', font_size=16,
                 font_family='Helvetica')

    chart.candle_style(up_color='#00ff55', down_color='#ed4807',
                       border_up_color='#FFFFFF', border_down_color='#FFFFFF',
                       wick_up_color='#FFFFFF', wick_down_color='#FFFFFF')

    chart.volume_config(up_color='#00ff55', down_color='#ed4807')

    chart.watermark('1D', color='rgba(180, 180, 240, 0.7)')

    chart.crosshair(mode='normal', vert_color='#FFFFFF', vert_style='dotted',
                    horz_color='#FFFFFF', horz_style='dotted')

    chart.legend(visible=True, font_size=14)

    chart.set(df)

    chart.show(block=True)

styling image


6. Callbacks:

import pandas as pd
from lightweight_charts import Chart


def get_bar_data(symbol, timeframe):
    if symbol not in ('AAPL', 'GOOGL', 'TSLA'):
        print(f'No data for "{symbol}"')
        return pd.DataFrame()
    return pd.read_csv(f'bar_data/{symbol}_{timeframe}.csv')


def on_search(chart, searched_string):  # Called when the user searches.
    new_data = get_bar_data(searched_string, chart.topbar['timeframe'].value)
    if new_data.empty:
        return
    chart.topbar['symbol'].set(searched_string)
    chart.set(new_data)


def on_timeframe_selection(chart):  # Called when the user changes the timeframe.
    new_data = get_bar_data(chart.topbar['symbol'].value, chart.topbar['timeframe'].value)
    if new_data.empty:
        return
    chart.set(new_data, True)


def on_horizontal_line_move(chart, line):
    print(f'Horizontal line moved to: {line.price}')


if __name__ == '__main__':
    chart = Chart(toolbox=True)
    chart.legend(True)

    chart.events.search += on_search

    chart.topbar.textbox('symbol', 'TSLA')
    chart.topbar.switcher('timeframe', ('1min', '5min', '30min'), default='5min',
                          func=on_timeframe_selection)

    df = get_bar_data('TSLA', '5min')
    chart.set(df)

    chart.horizontal_line(200, func=on_horizontal_line_move)

    chart.show(block=True)

callbacks gif


Documentation

Inquiries: shaders_worker_0e@icloud.com


This package is an independent creation and has not been endorsed, sponsored, or approved by TradingView. The author of this package does not have any official relationship with TradingView, and the package does not represent the views or opinions of TradingView.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

lightweight_charts-1.0.18.tar.gz (95.9 kB view details)

Uploaded Source

Built Distribution

lightweight_charts-1.0.18-py3-none-any.whl (98.3 kB view details)

Uploaded Python 3

File details

Details for the file lightweight_charts-1.0.18.tar.gz.

File metadata

  • Download URL: lightweight_charts-1.0.18.tar.gz
  • Upload date:
  • Size: 95.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for lightweight_charts-1.0.18.tar.gz
Algorithm Hash digest
SHA256 d236b5345a6aa53aea31bb8d811b69999a1e0777905e42d2e38da8bf9e276d0a
MD5 70edc1b3e036b79cd3ba115071b62602
BLAKE2b-256 e3e8748ed610e5c54981a214c2efa445c96c3e11b48f29c3416d017ffe111343

See more details on using hashes here.

File details

Details for the file lightweight_charts-1.0.18-py3-none-any.whl.

File metadata

File hashes

Hashes for lightweight_charts-1.0.18-py3-none-any.whl
Algorithm Hash digest
SHA256 0d35b18443858812c46a3e3ba7e8ff920531953a724f2ccc97e96c4839e99380
MD5 b8763efa65d88ade2878c69751f14476
BLAKE2b-256 56c5d08362c9150c058122a48158956ae7c39312ce29b4671e97ad453da5d3a5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page