Skip to main content

Python framework for TradingView's Lightweight Charts JavaScript library.

Project description

lightweight_charts_python

PyPi Release Made with Python License Documentation

lightweight-charts-python aims to provide a simple and pythonic way to access and implement TradingView's Lightweight Charts.

Installation

pip install lightweight_charts

Features

  1. Simple and easy to use.
  2. Blocking or non-blocking GUI.
  3. Streamlined for live data, with methods for updating directly from tick data.
  4. Support for PyQt and wxPython.

1. Display data from a csv:

import pandas as pd
from lightweight_charts import Chart


if __name__ == '__main__':
    
    chart = Chart()
    
    # Columns: | time | open | high | low | close | volume (if volume is enabled) |
    df = pd.read_csv('ohlcv.csv')
    chart.set(df)
    
    chart.show(block=True)

setting_data image


2. Updating bars in real-time:

import pandas as pd
from time import sleep
from lightweight_charts import Chart

if __name__ == '__main__':

    chart = Chart()

    df1 = pd.read_csv('ohlcv.csv')
    df2 = pd.read_csv('next_ohlcv.csv')

    chart.set(df1)

    chart.show()

    last_close = df1.iloc[-1]
    
    for i, series in df2.iterrows():
        chart.update(series)

        if series['close'] > 20 and last_close < 20:
            chart.marker(text='The price crossed $20!')
            
        last_close = series['close']
        sleep(0.1)

live data gif


3. Updating bars from tick data in real-time:

import pandas as pd
from time import sleep
from lightweight_charts import Chart


if __name__ == '__main__':
    
    df1 = pd.read_csv('ohlc.csv')
    
    # Columns: | time | price | volume (if volume is enabled) |
    df2 = pd.read_csv('ticks.csv')
    
    chart = Chart(volume_enabled=False)
    
    chart.set(df1)
    
    chart.show()
    
    for i, tick in df2.iterrows():
        chart.update_from_tick(tick)
            
        sleep(0.3)

tick data gif


4. Line Indicators:

import pandas as pd
from lightweight_charts import Chart


def calculate_sma(data: pd.DataFrame, period: int = 50):
    def avg(d: pd.DataFrame): 
        return d['close'].mean()
    result = []
    for i in range(period - 1, len(data)):
        val = avg(data.iloc[i - period + 1:i])
        result.append({'time': data.iloc[i]['date'], 'value': val})
    return pd.DataFrame(result)


if __name__ == '__main__':
    
    chart = Chart()
    
    df = pd.read_csv('ohlcv.csv')
    chart.set(df)
    
    line = chart.create_line()
    sma_data = calculate_sma(df)
    line.set(sma_data)
    
    chart.show(block=True)

line indicators image


5. Styling:

import pandas as pd
from lightweight_charts import Chart


if __name__ == '__main__':
    
    chart = Chart(debug=True)

    df = pd.read_csv('ohlcv.csv')

    chart.layout(background_color='#090008', text_color='#FFFFFF', font_size=16,
                 font_family='Helvetica')

    chart.candle_style(up_color='#00ff55', down_color='#ed4807',
                       border_up_color='#FFFFFF', border_down_color='#FFFFFF',
                       wick_up_color='#FFFFFF', wick_down_color='#FFFFFF')

    chart.volume_config(up_color='#00ff55', down_color='#ed4807')

    chart.watermark('1D', color='rgba(180, 180, 240, 0.7)')

    chart.crosshair(mode='normal', vert_color='#FFFFFF', vert_style='dotted',
                    horz_color='#FFFFFF', horz_style='dotted')

    chart.legend(visible=True, font_size=14)

    chart.set(df)

    chart.show(block=True)

styling image


6. Callbacks:

import pandas as pd
from lightweight_charts import Chart


def on_click(bar: dict):
    print(f"Time: {bar['time']} | Close: {bar['close']}")


if __name__ == '__main__':
    
    chart = Chart()

    df = pd.read_csv('ohlcv.csv')
    chart.set(df)

    chart.subscribe_click(on_click)

    chart.show(block=True)

callbacks gif


Documentation


This package is an independent creation and has not been endorsed, sponsored, or approved by TradingView. The author of this package does not have any official relationship with TradingView, and the package does not represent the views or opinions of TradingView.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

lightweight_charts-1.0.5.tar.gz (56.3 kB view details)

Uploaded Source

Built Distribution

lightweight_charts-1.0.5-py3-none-any.whl (58.0 kB view details)

Uploaded Python 3

File details

Details for the file lightweight_charts-1.0.5.tar.gz.

File metadata

  • Download URL: lightweight_charts-1.0.5.tar.gz
  • Upload date:
  • Size: 56.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.2

File hashes

Hashes for lightweight_charts-1.0.5.tar.gz
Algorithm Hash digest
SHA256 8c05c8f2927b6e3ffaa3efd6598cbc3de95b88878f9b2f55790800448911af7c
MD5 5c2ef9df54ce24007cbee5ff86c26140
BLAKE2b-256 64f628feed8cd31930c187acced5983159b7f4d2b7e660167aee2a9be565bf81

See more details on using hashes here.

File details

Details for the file lightweight_charts-1.0.5-py3-none-any.whl.

File metadata

File hashes

Hashes for lightweight_charts-1.0.5-py3-none-any.whl
Algorithm Hash digest
SHA256 d7185637d53ce7ecf02ccdc13b649d909f5fb9f86a9c2cbe80122f26e3a190f8
MD5 1a35b5815989c87eea26dd06c9dbd22b
BLAKE2b-256 e38f21465612455dc575702c60d01155c0d816952ebe4f081ed8fad0bc449179

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page