Skip to main content

Python framework for TradingView's Lightweight Charts JavaScript library.

Project description

lightweight_charts_python

PyPi Release Made with Python License Documentation

cover

lightweight-charts-python aims to provide a simple and pythonic way to access and implement TradingView's Lightweight Charts.

Installation

pip install lightweight_charts

Features

  1. Simple and easy to use.
  2. Blocking or non-blocking GUI.
  3. Streamlined for live data, with methods for updating directly from tick data.
  4. Support for PyQt and wxPython.
  5. Multi-Pane Charts using the SubChart (examples).

1. Display data from a csv:

import pandas as pd
from lightweight_charts import Chart


if __name__ == '__main__':
    
    chart = Chart()
    
    # Columns: | time | open | high | low | close | volume (if volume is enabled) |
    df = pd.read_csv('ohlcv.csv')
    chart.set(df)
    
    chart.show(block=True)

setting_data image


2. Updating bars in real-time:

import pandas as pd
from time import sleep
from lightweight_charts import Chart

if __name__ == '__main__':

    chart = Chart()

    df1 = pd.read_csv('ohlcv.csv')
    df2 = pd.read_csv('next_ohlcv.csv')

    chart.set(df1)

    chart.show()

    last_close = df1.iloc[-1]
    
    for i, series in df2.iterrows():
        chart.update(series)

        if series['close'] > 20 and last_close < 20:
            chart.marker(text='The price crossed $20!')
            
        last_close = series['close']
        sleep(0.1)

live data gif


3. Updating bars from tick data in real-time:

import pandas as pd
from time import sleep
from lightweight_charts import Chart


if __name__ == '__main__':
    
    df1 = pd.read_csv('ohlc.csv')
    
    # Columns: | time | price | volume (if volume is enabled) |
    df2 = pd.read_csv('ticks.csv')
    
    chart = Chart(volume_enabled=False)
    
    chart.set(df1)
    
    chart.show()
    
    for i, tick in df2.iterrows():
        chart.update_from_tick(tick)
            
        sleep(0.3)

tick data gif


4. Line Indicators:

import pandas as pd
from lightweight_charts import Chart


def calculate_sma(data: pd.DataFrame, period: int = 50):
    def avg(d: pd.DataFrame): 
        return d['close'].mean()
    result = []
    for i in range(period - 1, len(data)):
        val = avg(data.iloc[i - period + 1:i])
        result.append({'time': data.iloc[i]['date'], 'value': val})
    return pd.DataFrame(result)


if __name__ == '__main__':
    
    chart = Chart()
    
    df = pd.read_csv('ohlcv.csv')
    chart.set(df)
    
    line = chart.create_line()
    sma_data = calculate_sma(df)
    line.set(sma_data)
    
    chart.show(block=True)

line indicators image


5. Styling:

import pandas as pd
from lightweight_charts import Chart


if __name__ == '__main__':
    
    chart = Chart(debug=True)

    df = pd.read_csv('ohlcv.csv')

    chart.layout(background_color='#090008', text_color='#FFFFFF', font_size=16,
                 font_family='Helvetica')

    chart.candle_style(up_color='#00ff55', down_color='#ed4807',
                       border_up_color='#FFFFFF', border_down_color='#FFFFFF',
                       wick_up_color='#FFFFFF', wick_down_color='#FFFFFF')

    chart.volume_config(up_color='#00ff55', down_color='#ed4807')

    chart.watermark('1D', color='rgba(180, 180, 240, 0.7)')

    chart.crosshair(mode='normal', vert_color='#FFFFFF', vert_style='dotted',
                    horz_color='#FFFFFF', horz_style='dotted')

    chart.legend(visible=True, font_size=14)

    chart.set(df)

    chart.show(block=True)

styling image


6. Callbacks:

import pandas as pd
from lightweight_charts import Chart


def on_click(bar: dict):
    print(f"Time: {bar['time']} | Close: {bar['close']}")


if __name__ == '__main__':
    
    chart = Chart()

    df = pd.read_csv('ohlcv.csv')
    chart.set(df)

    chart.subscribe_click(on_click)

    chart.show(block=True)

callbacks gif


Documentation


This package is an independent creation and has not been endorsed, sponsored, or approved by TradingView. The author of this package does not have any official relationship with TradingView, and the package does not represent the views or opinions of TradingView.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

lightweight_charts-1.0.7.tar.gz (59.9 kB view details)

Uploaded Source

Built Distribution

lightweight_charts-1.0.7-py3-none-any.whl (59.5 kB view details)

Uploaded Python 3

File details

Details for the file lightweight_charts-1.0.7.tar.gz.

File metadata

  • Download URL: lightweight_charts-1.0.7.tar.gz
  • Upload date:
  • Size: 59.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.2

File hashes

Hashes for lightweight_charts-1.0.7.tar.gz
Algorithm Hash digest
SHA256 edf118662730261b54483c0a431121f7823d4fac48f9d9e3c746167792a6f55e
MD5 7e334c082aef549b91e501da42182054
BLAKE2b-256 404b9ce342eb4876c93c1f06fb4309e985f361017a8f358b7a499dd4f80e8376

See more details on using hashes here.

File details

Details for the file lightweight_charts-1.0.7-py3-none-any.whl.

File metadata

File hashes

Hashes for lightweight_charts-1.0.7-py3-none-any.whl
Algorithm Hash digest
SHA256 5ff8c0c5562469b6041a1ed9309e51635ba5be41b9ebc6f25e8f413a0e93451a
MD5 982c9136f2a2ce69b29031eb16bab3a8
BLAKE2b-256 219947d3fbf4d609305b2ec174c4ba9149266556ae9694a877ec423dbe0c1dd5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page