Likely cause finds creative ways to identify causes
Project description
# Likelycause2
Likelycause is an utility package that uses several functions to attribute causes to variations. Using a combination of arithmetical decompositions and bayesian techniques, this was built to facilitate the workflow of a data-analyst working for the private sector.
## What the package contains This package has everything built under the likelycause2 module, so all the functions should be called using “likelycause2.”. Currently, we have 1 auxiliary function and 1 causal function.
### Auxiliary functions - likelycause2.last_period: The last period function is a utility function that builds variation variables in a dataframe._
### Causal functions - likelycause2.bayes_suspects: The bayes_suspects function calculates the conditional probabilities of the event and each suspicious causes or a combination of those causes. It also suggests an attribution to each individual cause, by adjusting the intersections of causes
## Likelycause2.last_period
### Description: The last period function is a utility function that builds variation variables in a dataframe. Variations are defined between moment t and a moment in the past.
### Arguments:
df (pd.DataFrame): the dataframe
unique_id (string): unique identifier of each line. Must be unique, and can only be 1 column
interval (string): what is the interval you want to calculate variations for. Accepts days, weeks and hours
periods (int): number of periods you want to look back on that interval. For last variations, for example, the argument period would be 1
date_column (string): the date column in your dateframe. Must be a datetime. To convert, use pandas.to_datetime function
to_past (list): list of columns you want to calculate the variations for
### Returns: Returns the dataframe that was inputed with additinal columns named v+name of the columns in the to_past argument. Those columns represent the variation of that variable between moment t and t-periods. This variation is calculated as (Variable in moment t)/(Variable in moment t-periods).
## Likelycause2.bayes_suspects
### Description: The bayes_suspects function calculates the conditional probabilities of the event and each suspicious causes or a combination of those causes. It also suggests an attribution to each individual cause, by adjusting the intersections of causes
### Arguments:
df (pd.DataFrame): the dataframe
event (string): name of the column that contains the event that we want to explain
suspects (list): list with name of the columns that contains the potential causes for what we want to explain
point (dictionary): dictionary with the point for which we want to calculate the probability. Must be a combination of the cause and all the individual points of suspects
### Returns: Returns a dataframe with all the possible probabilities combinations, and the conditional probabilities:
name: name of that conditional combination. If it has one event, it represents P(event|a). If it has 2 events it represents P(event1 & event2|a)
prob_ba: P(cause | event)
prob_a: P(cause)
prob_b: P(event)
pbayes: confitional probability
pbayes_attribution: suggested probability attribution if we want to attribute to individual causes
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file likelycause2-0.1.8.tar.gz
.
File metadata
- Download URL: likelycause2-0.1.8.tar.gz
- Upload date:
- Size: 4.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c4c848833f6382f8a46f7098edd660d02700e3f10069ae9cdf0e4dfc6611b6ca |
|
MD5 | 66068ecd9aa183db14f741a8158fff8a |
|
BLAKE2b-256 | 662dbddfedbbbbb03c0e38c5713944b0bd63a9afe8924fe170806019f014d4e8 |
File details
Details for the file likelycause2-0.1.8-py3-none-any.whl
.
File metadata
- Download URL: likelycause2-0.1.8-py3-none-any.whl
- Upload date:
- Size: 5.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.47.0 CPython/3.7.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 04e7b035883c8fd1c8d1844790a5a83694b7f68cb492ccb9e23ff29f3ee1b67c |
|
MD5 | 24ee1e105a936af6f0809d9891e39d03 |
|
BLAKE2b-256 | c792eb81054c7c2865a5ee782f7c2e5cf4365dd256d2f9ba43a492cfe3c07ab1 |