Skip to main content

Lossy-compression utility for sequence data in NumPy

Project description

lilcom

This package lossily compresses floating-point NumPy arrays into byte strings, with an accuracy specified by the user. The main anticipated use is in machine learning applications, for storing things like training data and models.

This package requires Python 3 and is not compatible with Python 2.

Installation with PyPi

From PyPi you can install this with just

pip3 install lilcom

Installation with conda

conda install -c lilcom lilcom

How to use

The most common usage pattern will be as follows (showing Python code):

import numpy as np
import lilcom

a = np.random.randn(300,500)
a_compressed = lilcom.compress(a)
# a_compressed is of type `bytes`, a byte string.
# In this case it will use about 1.3 bytes per element.

# decompress a
a_decompressed = lilcom.decompress(a_compressed)

The compression is lossy so a_decompressed will not be exactly the same as a. The amount of error (absolute, not relative!) is determined by the optional tick_power argument to lilcom.compress() (default: -8), which is the power of 2 used for the step size between discretized values. The maximum error per element is 2**(tick_power-1), e.g. for tick_power=-8, it is 1/512.

Installation from Github

To install lilcom from github, first clone the repository;

git clone https://github.com/danpovey/lilcom.git

then run setup with install argument.

python3 setup.py install

(you may need to add the --user flag if you don't have system privileges). You need to make sure a C++ compiler is installed, e.g. g++ or clang. To test it, you can then cd to test and run:

python3 test_lilcom.py

Technical details

The algorithm regresses each element on the previous element (for a 1-d array) or, for general n-d arrays, it regresses on the previous elements along each of the axes, i.e. we regress element a[i,j] on a[i-1,j] and a[i,j-1]. The regression coefficients are global and written as part of the header in the string.

The elements are then integerized and the integers are compressed using an algorithm that gives good compression when successive elements tend to have about the same magnitude (the number of bits we're transmitting varies dynamically acccording to the magnitudes of the elements).

The core parts of the code are implemented in C++.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

lilcom-1.8.0.tar.gz (45.6 kB view details)

Uploaded Source

Built Distributions

lilcom-1.8.0-cp312-cp312-win_amd64.whl (73.8 kB view details)

Uploaded CPython 3.12 Windows x86-64

lilcom-1.8.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (87.1 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

lilcom-1.8.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (92.9 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

lilcom-1.8.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (81.9 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

lilcom-1.8.0-cp312-cp312-macosx_10_9_universal2.whl (113.3 kB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

lilcom-1.8.0-cp311-cp311-win_amd64.whl (73.4 kB view details)

Uploaded CPython 3.11 Windows x86-64

lilcom-1.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (87.2 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

lilcom-1.8.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (93.4 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

lilcom-1.8.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (81.8 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

lilcom-1.8.0-cp311-cp311-macosx_10_9_universal2.whl (112.3 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

lilcom-1.8.0-cp310-cp310-win_amd64.whl (73.5 kB view details)

Uploaded CPython 3.10 Windows x86-64

lilcom-1.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (87.2 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

lilcom-1.8.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (93.4 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

lilcom-1.8.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (81.8 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

lilcom-1.8.0-cp310-cp310-macosx_10_9_universal2.whl (112.3 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

lilcom-1.8.0-cp39-cp39-win_amd64.whl (73.4 kB view details)

Uploaded CPython 3.9 Windows x86-64

lilcom-1.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (87.1 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

lilcom-1.8.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (93.0 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

lilcom-1.8.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (81.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

lilcom-1.8.0-cp39-cp39-macosx_10_9_universal2.whl (112.5 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

lilcom-1.8.0-cp38-cp38-win_amd64.whl (73.3 kB view details)

Uploaded CPython 3.8 Windows x86-64

lilcom-1.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (87.1 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

lilcom-1.8.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (92.8 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

lilcom-1.8.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (81.7 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

lilcom-1.8.0-cp38-cp38-macosx_10_9_universal2.whl (112.2 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

lilcom-1.8.0-cp37-cp37m-win_amd64.whl (74.1 kB view details)

Uploaded CPython 3.7m Windows x86-64

lilcom-1.8.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (88.6 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

lilcom-1.8.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (94.9 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

lilcom-1.8.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (83.3 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

lilcom-1.8.0-cp36-cp36m-win_amd64.whl (74.1 kB view details)

Uploaded CPython 3.6m Windows x86-64

lilcom-1.8.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (88.6 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

lilcom-1.8.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl (94.8 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ i686

lilcom-1.8.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (83.2 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

File details

Details for the file lilcom-1.8.0.tar.gz.

File metadata

  • Download URL: lilcom-1.8.0.tar.gz
  • Upload date:
  • Size: 45.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.10.12

File hashes

Hashes for lilcom-1.8.0.tar.gz
Algorithm Hash digest
SHA256 db2873a31682bdfd8e4dd037e399d04c6c4f185a7149cf9543005da7ee3da2af
MD5 ae7ddb6ec093a597e033300aec344655
BLAKE2b-256 bc7ef3c55d62b9b010e86333841254596ff3a0a49fbd900dcc10e685734b9079

See more details on using hashes here.

File details

Details for the file lilcom-1.8.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: lilcom-1.8.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 73.8 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.13

File hashes

Hashes for lilcom-1.8.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 351d8875f12d98a5c51e21ac9fb3d19b027441354812cc8c0b64960e8f182cc2
MD5 7cee4d3db049488956cbe8adf4112e1c
BLAKE2b-256 29deffb15d340d4daed2e98fca0b5cc4cc46690704c8c53d2ab63321797780d6

See more details on using hashes here.

File details

Details for the file lilcom-1.8.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lilcom-1.8.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a99b0982e5d926b0653cda596d4098a796d2a1aac1904047086e1220d5dd47c2
MD5 240ef4cdb6d4e07bcf1216af3067f1bd
BLAKE2b-256 4e91cc9eb1898bf37df740e6cf991e3dd9d0c109a6b33c0e188ba3fb089e5fa7

See more details on using hashes here.

File details

Details for the file lilcom-1.8.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for lilcom-1.8.0-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8e790ae7d9de08693e25e0ca7681864336707f746621e386d7089c2b8ae9aa07
MD5 32a86771e999d961769ce2dc7363b2fd
BLAKE2b-256 f3c19fbbe6ca15a39cd54bbc40a46df63a815cf8aeb1d735916a5fc22b1bcdae

See more details on using hashes here.

File details

Details for the file lilcom-1.8.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lilcom-1.8.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 86889c071ae223bd5e9c4c943b2571625c2c46022a8808e3a4d266f29cfaaca9
MD5 f8d8ee6bd4dabd2cc4160addd93520eb
BLAKE2b-256 801ec72573714fe3c3f392502089e5dce49d6184b0b31ce6549e28b41fb3a23b

See more details on using hashes here.

File details

Details for the file lilcom-1.8.0-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for lilcom-1.8.0-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 90203a51327b3518f9469ad2d0dbcf313b6b29782d9356db7c08fe9dc11e4749
MD5 33f5eefb231ee9fea91fe2df7d1fe06b
BLAKE2b-256 aec2da9ce04109843586974793009a4fe66913d27015e7ffc67301f47551be01

See more details on using hashes here.

File details

Details for the file lilcom-1.8.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: lilcom-1.8.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 73.4 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.13

File hashes

Hashes for lilcom-1.8.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 cb438e47b7172edf99e72cdc23971a770bbb33adedda3b4ace62d67b5fe393e7
MD5 e0a5450aafe3138fca299b789c375bac
BLAKE2b-256 6fc4b8e61ca449e31e53447bdbb01c7431d17fac8a71b5a7b47ce7650a7ff21d

See more details on using hashes here.

File details

Details for the file lilcom-1.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lilcom-1.8.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4b105a38ac79752a05f25404e4d992063d0748659fbacc6da4229402cc3000cd
MD5 104b558bb612d13cf9a927cba383ad6b
BLAKE2b-256 e0db278ce064b7cf5f0881f928a0b887bdc6908ca20a57c1c6b747c269713f63

See more details on using hashes here.

File details

Details for the file lilcom-1.8.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for lilcom-1.8.0-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 1f10906449524fc55361ad3e769e54edde66178fd7690287eb7e72fae12e3f66
MD5 9156755e7f8769b6367676d280e92ab7
BLAKE2b-256 5bc392d747f2c3969946100046c51e1537b5998141454e3de877b7cf3644a7ea

See more details on using hashes here.

File details

Details for the file lilcom-1.8.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lilcom-1.8.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9dc185a212cf257f8b314fe6041ea92724e55f32cc8380ec1d98d3a2d66ce06d
MD5 5555aff6064fa66c60543ca7be4dccb1
BLAKE2b-256 6a77b62689f1eb621feca543618fbf7e8019498f4973b1638a742f0e61713e56

See more details on using hashes here.

File details

Details for the file lilcom-1.8.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for lilcom-1.8.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 af1ceb08943a2a2941eeedd7c988b066e6c0f7a0f4a2731ee511bd6bc1c2f9ef
MD5 6090380bbcef5194c0ff36ea4e614334
BLAKE2b-256 c19be0f0eee1038acc5fe3fa73ea57166d09040613c11ed2a845bbdf94c04f83

See more details on using hashes here.

File details

Details for the file lilcom-1.8.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: lilcom-1.8.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 73.5 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.13

File hashes

Hashes for lilcom-1.8.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 47fb72d299d1e8d2498fd88ef306a262d7a9529fec7b0a355be05c5a6de94b43
MD5 a7c7fdcadf06441e0c5d14ac9394f478
BLAKE2b-256 0eee55f7ae2b35084d912285a903a7b1b448cc10aa85f572dd622caad45bd66c

See more details on using hashes here.

File details

Details for the file lilcom-1.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lilcom-1.8.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b5e042059474e46da4cceb833031b13cbec6ecff66cc7cc806c11679edd1384c
MD5 b8383407137316d03a9e0fd9d5e5daff
BLAKE2b-256 30ac1a163be773eddfaaec575401ecc2229cd1d84b9acfbbd85b3e61d71a94bf

See more details on using hashes here.

File details

Details for the file lilcom-1.8.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for lilcom-1.8.0-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d76c32a98a2059b0c3df0d99f8d8d7cf996b880c2703113f3507f3015a641d5c
MD5 cdfcff0640b0be73edd7a1821a691080
BLAKE2b-256 dabafc3173ca7948c23dfe1df441e6ec06a651b2154ee848891050561eed3ed7

See more details on using hashes here.

File details

Details for the file lilcom-1.8.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lilcom-1.8.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 217f91148481edaff2faa9245cfa69afbd4c09896abb672d3b6fa112fb317e5a
MD5 1dacb5349187d62e8b63361ffcb164e4
BLAKE2b-256 441161c0aa042982537c553322571ff7cb3807cfc1cb06c0dd87a775c9e169e3

See more details on using hashes here.

File details

Details for the file lilcom-1.8.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for lilcom-1.8.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 d51fd8127f90717d05dfc43440c5b26d16e6ffbdfb55b815652c4ffdaf27307a
MD5 04b60bea49ce922ca7f15e2c4a8f0a8f
BLAKE2b-256 5947d4bd563099a68dced086b9b747452f0a251fddda58d7f4d7a875c2ddaa0c

See more details on using hashes here.

File details

Details for the file lilcom-1.8.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: lilcom-1.8.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 73.4 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.13

File hashes

Hashes for lilcom-1.8.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 124575bd2280e0f6745b1e0f80b963bfdfad69f19869743374f82b7923fc9188
MD5 7c7d42ec6809711fde6a12f94d7f86ca
BLAKE2b-256 1b831c98546d428dd44175d2d7bc8f57472e29c07968d793f09dc01fd3000320

See more details on using hashes here.

File details

Details for the file lilcom-1.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lilcom-1.8.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e4bbf2e336972e42432962b03e422846ddce4733facf894e4aa71d447c0ee99a
MD5 8fe77793542dd31dc4d155e6078c3d2c
BLAKE2b-256 81579a91b6f6f953cd9d20d06a4dea122f40f550fc736246ba5e92442d5eb797

See more details on using hashes here.

File details

Details for the file lilcom-1.8.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for lilcom-1.8.0-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6f08357c6be063284b2ab46d23fbbd2420e7b14bf14206a2a24958dd6ec084ca
MD5 40e92bfdc1b7a629fc6296583aa803af
BLAKE2b-256 2d412a57731cdae0ec14e07faf0dd5ba4689ce41b47de74fe5a9b6f471be4a2d

See more details on using hashes here.

File details

Details for the file lilcom-1.8.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lilcom-1.8.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 45081fa39be35d98bb154281da6850138ce8de9ec47d49cd8a8fb6925a6e6892
MD5 c7881bad489e2626ed35f13cced293c6
BLAKE2b-256 fe18da6207576e7bc74575f700ae58d20328c2b770e3e75a783a475b74403cb5

See more details on using hashes here.

File details

Details for the file lilcom-1.8.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for lilcom-1.8.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 73ca77b20ed91f5f4dfcc5e00879f65524c9a382ab5b07fee6a1c645ed8563fd
MD5 7750e8c4f8e99e8ed76fcbe6a658bb9c
BLAKE2b-256 c5772a818df04650c7bd23c4a9beebb379e4aa9f03602ac398ee0b892632f87f

See more details on using hashes here.

File details

Details for the file lilcom-1.8.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: lilcom-1.8.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 73.3 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.13

File hashes

Hashes for lilcom-1.8.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 222efa19fb7ba1aa9bef8bec36ee27614f82867b0c5cdca22da50005f999c4f7
MD5 79ea40d39aff826526f55fc6fb886154
BLAKE2b-256 92518900f7447f3578c125871d2a0d3263841f5b508dde9e41ef396029b601d9

See more details on using hashes here.

File details

Details for the file lilcom-1.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lilcom-1.8.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5dbc66a0ba799fb1493dea7832231f651a20c2c4b65ec2c8efca673a5f5be3c5
MD5 33d68dcbb8a99f29d52c65a09f34a065
BLAKE2b-256 e7f68436b7bdf79bb49f31d60416ef1ba72bc22d75c2a02a5742d43d373f28e7

See more details on using hashes here.

File details

Details for the file lilcom-1.8.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for lilcom-1.8.0-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 60ac8488a9ea397a76e05dbaf173f28f5edbf7c2b3729a55644a636b2755afee
MD5 6f786a2b6c7fe98b86152c495ba8df45
BLAKE2b-256 24a2009ea6d62d84f5a40b87ebd02e495b4d2988cf5e92dbca79da2893b4cc1d

See more details on using hashes here.

File details

Details for the file lilcom-1.8.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lilcom-1.8.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3a15ec28a5721bb2299960ac0e6b1cafb5e036a86b43d9c27c233e74e418fa2b
MD5 9ac160de0a0ae8dffd22a9314d9a6570
BLAKE2b-256 5bdd12af2a67a8f8b4ac63f03e203f598b221b18668a6e9fa2903b878974fac5

See more details on using hashes here.

File details

Details for the file lilcom-1.8.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for lilcom-1.8.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 e1fd8796fc401e9af13eb75804a49cbce523c615d89e063bbca28613f31fc951
MD5 abdf396e9fac8a61b77c7f8de5834bd2
BLAKE2b-256 9a25a149607ee89f7181db343974bc97cb5baf90c1416db527c4820031999cc2

See more details on using hashes here.

File details

Details for the file lilcom-1.8.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: lilcom-1.8.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 74.1 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.13

File hashes

Hashes for lilcom-1.8.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 24315f5e0e658cf354beb8220e4e1928cf492af38d478d0c29dc4be6d28ce567
MD5 322b32c3205624e14685a2bd5c98ace8
BLAKE2b-256 2802817f72ac43f4505c4dca0bb4faa2b5780ad4a2d55ebc5dce09f67c24ac91

See more details on using hashes here.

File details

Details for the file lilcom-1.8.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lilcom-1.8.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 247eb5556c9e8901c4a5470ac48b8620e7ffd5fc9e7cbb639b9aceb2f4e57326
MD5 ecd7a8b2695ac9e053453e0437a02ad4
BLAKE2b-256 cd921c1b95f1e91aafbe610756892a543e191265e254586516550180b6cd16d8

See more details on using hashes here.

File details

Details for the file lilcom-1.8.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for lilcom-1.8.0-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 bc685038fac15f1c2ec99bbc8ece39b8c4d33df96ef0d9cf197bb459b2f2e015
MD5 587fa3778c2fc24266cf88317a4cb42c
BLAKE2b-256 f09cbdac27f625a64ccec51adf141919e9f60ccfec8717b05c20d97f609468e1

See more details on using hashes here.

File details

Details for the file lilcom-1.8.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lilcom-1.8.0-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3a22617030dabd256ff804feb56d7217f94dea3c76604c0a7e253f478cbed905
MD5 c2eaae40ec870098d55cc882b57b46b5
BLAKE2b-256 b5632ec2fbbc2a9b096ce4d9c3f24e106c28f45e2bbd1091255377799d908e01

See more details on using hashes here.

File details

Details for the file lilcom-1.8.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: lilcom-1.8.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 74.1 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.9.13

File hashes

Hashes for lilcom-1.8.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 ebd97a9ab914a5002fa61bdb4276d5d93a81a61568bdb0b28e1990947b42af32
MD5 374126c0fcadf3046099f3b592d976bf
BLAKE2b-256 e63bdd0042c9de56dc5994e079131e813885667975e85b163870ab3241cb7430

See more details on using hashes here.

File details

Details for the file lilcom-1.8.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for lilcom-1.8.0-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 06405b51f5bcd5cb9e2f14ce0c41e0608091f42293e470beacf3a99cd78f17b9
MD5 c204d8da6660e554f7c1eb85d92f4e6c
BLAKE2b-256 6980ce8cc2d00873cf42ceff3c01c44cfaff6c8d05ab32a72733a6da55b83eb0

See more details on using hashes here.

File details

Details for the file lilcom-1.8.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for lilcom-1.8.0-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 1cce963a2086b88fb6a1eaf3423b7c894555427c45281496087d6fb94f9c9c82
MD5 e5316d574f0bdcdb650c7e1a6914f779
BLAKE2b-256 8512448117131de5bdd047a3845dfdcc9b9f55d8f5cf250d59c3ed02267b0512

See more details on using hashes here.

File details

Details for the file lilcom-1.8.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for lilcom-1.8.0-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 12aa51aa7a13422fd88f4dd015debd364630efc745991e20e21b0ed70f282b06
MD5 742f6d2f6dc700725826de96a08ea204
BLAKE2b-256 7cb5bf3bfcd4532a129841e2e0fc74d99d19b5f07f6613eca18cd19ffd7cfa22

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page