High level interface to create Pytorch Graphs.
Project description
Limbus: Computer Vision pipelining for PyTorch
Similar to the eye corneal limbus - Limbus is a framework to create Computer Vision pipelines within the context of Deep Learning and writen in terms of differentiable tensors message passing on top of Kornia and PyTorch.
Overview
You can create pipelines using limbus.Component
s as follows:
# define your components
c1 = Constant("c1", 1.)
c2 = Constant("c2", torch.ones(1, 3))
add = Adder("add")
show = Printer("print")
# connect the components
c1.outputs.out >> add.inputs.a
c2.outputs.out >> add.inputs.b
add.outputs.out >> show.inputs.inp
# create the pipeline and add its nodes
pipeline = Pipeline()
pipeline.add_nodes([c1, c2, add, show])
# run your pipeline
pipeline.run(1)
torch.allclose(add.outputs.out.value, torch.ones(1, 3) * 2.)
Example using the stack
torch method:
# define your components
c1 = Constant("c1", 0)
t1 = Constant("t1", torch.ones(1, 3))
t2 = Constant("t2", torch.ones(1, 3) * 2)
stack = Stack("stack")
show = Printer("print")
# connect the components
c1.outputs.out >> stack.inputs.dim
t1.outputs.out >> stack.inputs.tensors.select(0)
t2.outputs.out >> stack.inputs.tensors.select(1)
stack.outputs.out >> show.inputs.inp
# create the pipeline and add its nodes
pipeline = Pipeline()
pipeline.add_nodes([c1, t1, t2, stack, show])
# run your pipeline
pipeline.run(1)
torch.allclose(stack.outputs.out.value, torch.tensor([[1., 1., 1.],[2., 2., 2.]]))
Remember that the components can be run without the Pipeline
, e.g in the last example you can also run:
asyncio.run(asyncio.gather(c1(), t1(), t2(), stack(), show()))
Basically, Pipeline
objects allow you to control the execution flow, e.g. you can stop, pause, resume the execution, determine the number of executions to be run...
A higher level API on top of Pipeline
is App
allowing to encapsulate some code. E.g.:
class MyApp(App):
def create_components(self):
self.c1 = Constant("c1", 0)
self.t1 = Constant("t1", torch.ones(1, 3))
self.t2 = Constant("t2", torch.ones(1, 3) * 2)
self.stack = stack("stack")
self.show = Printer("print")
def connect_components(self):
self.c1.outputs.out >> self.stack.inputs.dim
self.t1.outputs.out >> self.stack.inputs.tensors.select(0)
self.t2.outputs.out >> self.stack.inputs.tensors.select(1)
self.stack.outputs.out >> self.show.inputs.inp
MyApp().run(1)
Component definition
Creating your own components is pretty easy, you just need to inherit from limbus.Component
and implement some methods (see some examples in examples/defining_cmps.py
).
The Component
class has the next main methods:
__init__
: where you can add class parameters to your component.register_inputs
: where you need to declare the input pins of your component.register_outputs
: where you need to declare the output pins of your component.register_properties
: where you can declare properties that can be changed during the execution.forward
: where you must define the logic of your component (mandatory).
For a detailed list of Component
methods and attributes, please check limbus/core/component.py
.
Note that if you want intellisense (at least in VSCode
you will need to define the input
and output
types).
Let's see a very simple example that sums 2 integers:
class Add(Component):
"""Add two numbers."""
# NOTE: type definition is optional, but it helps with the intellisense. ;)
class InputsTyping(InputParams):
a: InputParam
b: InputParam
class OutputsTyping(OutputParams):
out: OutputParam
inputs: InputsTyping
outputs: OutputsTyping
@staticmethod
def register_inputs(inputs: InputParams) -> None:
# Here you need to declare the input parameters and their default values (if they have).
inputs.declare("a", int)
inputs.declare("b", int)
@staticmethod
def register_outputs(outputs: OutputParams) -> None:
# Here you need to declare the output parameters.
outputs.declare("out", int)
async def forward(self) -> ComponentState:
# Here you must to define the logic of your component.
a, b = await asyncio.gather(
self.inputs.a.receive(),
self.inputs.b.receive()
)
await self.outputs.out.send(a + b)
return ComponentState.OK
Note that Component
can inherint from nn.Module
. By default inherints from object
.
To change the inheritance, before importing any other limbus
module, set the COMPONENT_TYPE
variable as:
from limbus_config import config
config.COMPONENT_TYPE = "torch"
Ecosystem
Limbus is a core technology to easily build different components and create generic pipelines. In the following list, you can find different examples about how to use Limbus with some first/third party projects containing components:
- Official examples:
- Basic pipeline generation: https://github.com/kornia/limbus/blob/main/examples/default_cmps.py
- Define custom components: https://github.com/kornia/limbus/blob/main/examples/defining_cmps.py
- Create a web camera application: https://github.com/kornia/limbus/blob/main/examples/defining_cmps.py
- Official repository with a set of basic components: https://github.com/kornia/limbus-components
- Example combining limbus and the farm-ng Amiga: https://github.com/edgarriba/amiga-limbus-examples
- Example implementing a Kornia face detection pipeline: https://github.com/edgarriba/limbus-face-detector
Installation
from PyPI:
pip install limbus # limbus alone
# or
pip install limbus[components] # limbus + some predefined components
Note that to use widgets you need to install their dependencies:
pip install limbus[widgets]
from the repository:
pip install limbus@git+https://git@github.com/kornia/limbus.git # limbus alone
# or
pip install limbus[components]@git+https://git@github.com/kornia/limbus.git # limbus + some predefined components
for development
you can install the environment with the following commands:
git clone https://github.com/kornia/limbus
cd limbus
source path.bash.inc
In order to regenerate the development environment:
cd limbus
rm -rf .dev_env
source path.bash.inc
Testing
Run pytest
and automatically will test: cov
, pydocstyle
, mypy
and flake8
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file limbus-0.1.6.tar.gz
.
File metadata
- Download URL: limbus-0.1.6.tar.gz
- Upload date:
- Size: 30.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3e340a83fcf5a2534092cc8fd76cc10e1efbf555a93aaeab4f8aab48f4f87c77 |
|
MD5 | 5bb556fc3bef41af27eb2ef44b2b754e |
|
BLAKE2b-256 | cc1bd894591d7f35fb5f2f9c192104e672edf4cea05f6245cf3c27e8bd376daa |
File details
Details for the file limbus-0.1.6-py2.py3-none-any.whl
.
File metadata
- Download URL: limbus-0.1.6-py2.py3-none-any.whl
- Upload date:
- Size: 33.4 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.1 CPython/3.11.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 8227b54fa11297ce4fcc8fa0b94736efb39a0c47f05f90008e8ce8313c659de7 |
|
MD5 | aaae22591737b98915d504eeedfb0682 |
|
BLAKE2b-256 | 4a0e5cfb04167757106b2cb4f14b0e7b62bcab169180d1ba4d467ec2a65b57db |