Skip to main content

High level interface to create Pytorch Graphs.

Project description

Limbus: Computer Vision pipelining for PyTorch

(🚨 Warning: Unstable Prototype 🚨)

CI

Similar to the eye corneal limbus - Limbus is a framework to create Computer Vision pipelines within the context of Deep Learning and writen in terms of differentiable tensors message passing on top of Kornia and PyTorch.

Overview

You can create pipelines using limbus.Components as follows:

# define your components
c1 = Constant("c1", 1.)
c2 = Constant("c2", torch.ones(1, 3))
add = Adder("add")
show = Printer("print")

# connect the components
c1.outputs.out >> add.inputs.a
c2.outputs.out >> add.inputs.b
add.outputs.out >> show.inputs.inp

# create the pipeline and add its nodes
pipeline = Pipeline()
pipeline.add_nodes([c1, c2, add, show])

# run your pipeline
pipeline.run(1)

torch.allclose(add.outputs.out.value, torch.ones(1, 3) * 2.)

Example using the stack torch method:

# define your components
c1 = Constant("c1", 0)
t1 = Constant("t1", torch.ones(1, 3))
t2 = Constant("t2", torch.ones(1, 3) * 2)
stack = Stack("stack")
show = Printer("print")

# connect the components
c1.outputs.out >> stack.inputs.dim
t1.outputs.out >> stack.inputs.tensors.select(0)
t2.outputs.out >> stack.inputs.tensors.select(1)
stack.outputs.out >> show.inputs.inp

# create the pipeline and add its nodes
pipeline = Pipeline()
pipeline.add_nodes([c1, t1, t2, stack, show])

# run your pipeline
pipeline.run(1)

torch.allclose(stack.outputs.out.value, torch.tensor([[1., 1., 1.],[2., 2., 2.]]))

Remember that the components can be run without the Pipeline, e.g in the last example you can also run:

asyncio.run(asyncio.gather(c1(), t1(), t2(), stack(), show()))

Basically, Pipeline objects allow you to control the execution flow, e.g. you can stop, pause, resume the execution, determine the number of executions to be run...

A higher level API on top of Pipeline is App allowing to encapsulate some code. E.g.:

class MyApp(App):
    def create_components(self):
        self.c1 = Constant("c1", 0)
        self.t1 = Constant("t1", torch.ones(1, 3))
        self.t2 = Constant("t2", torch.ones(1, 3) * 2)
        self.stack = stack("stack")
        self.show = Printer("print")

    def connect_components(self):
        self.c1.outputs.out >> self.stack.inputs.dim
        self.t1.outputs.out >> self.stack.inputs.tensors.select(0)
        self.t2.outputs.out >> self.stack.inputs.tensors.select(1)
        self.stack.outputs.out >> self.show.inputs.inp

MyApp().run(1)

Installation

from PyPI:

pip install limbus  # limbus alone

optionally some predefined components can be installed.

In the near future with PyPI (not yet available)

pip install limbus[components]  # limbus + some predefined components

currently they can be installed from the repository:

pip install limbus-components@git+https://git@github.com/kornia/limbus-components.git

from the repository:

pip install limbus@git+https://git@github.com/kornia/limbus.git  # limbus alone
pip install limbus-components@git+https://git@github.com/kornia/limbus-components.git  # some predefined components (optional)

for development

you can install the environment with the following commands:

git clone https://github.com/kornia/limbus
cd limbus
source path.bash.inc

In order to regenerate the development environment:

cd limbus
rm -rf .dev_env
source path.bash.inc

Testing

Run pytest and automatically will test: cov, pydocstyle, mypy and flake8

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

limbus-0.1.0.dev0.tar.gz (25.1 kB view details)

Uploaded Source

Built Distribution

limbus-0.1.0.dev0-py2.py3-none-any.whl (27.9 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file limbus-0.1.0.dev0.tar.gz.

File metadata

  • Download URL: limbus-0.1.0.dev0.tar.gz
  • Upload date:
  • Size: 25.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for limbus-0.1.0.dev0.tar.gz
Algorithm Hash digest
SHA256 f5cd881f7da56f8e08abd0b506c082efddf7fc340ac563b6fe0a971fb95f7b63
MD5 47311f8805f05ab5fe531807eab13dc2
BLAKE2b-256 7bfe59e5ea596c2d4f9b1bc55fa382dae30d97d2dbcccde8e69e624fc89e44e7

See more details on using hashes here.

File details

Details for the file limbus-0.1.0.dev0-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for limbus-0.1.0.dev0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 222f120f41701ebf5831d66ab7fb19a5927752fc239487a9e0f7c062de00e157
MD5 bcc9db28087b49944dc7d8eb1b5406f7
BLAKE2b-256 3c443718ea122586b33c79daa0464c9b433fc7fc56e6b2027e98fec8887cc671

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page