Skip to main content

High level interface to create Pytorch Graphs.

Project description

Limbus: Computer Vision pipelining for PyTorch

(🚨 Warning: Unstable Prototype 🚨)

CI

Similar to the eye corneal limbus - Limbus is a framework to create Computer Vision pipelines within the context of Deep Learning and writen in terms of differentiable tensors message passing on top of Kornia and PyTorch.

Overview

You can create pipelines using limbus.Components as follows:

# define your components
c1 = Constant("c1", 1.)
c2 = Constant("c2", torch.ones(1, 3))
add = Adder("add")
show = Printer("print")

# connect the components
c1.outputs.out >> add.inputs.a
c2.outputs.out >> add.inputs.b
add.outputs.out >> show.inputs.inp

# create the pipeline and add its nodes
pipeline = Pipeline()
pipeline.add_nodes([c1, c2, add, show])

# run your pipeline
pipeline.run(1)

torch.allclose(add.outputs.out.value, torch.ones(1, 3) * 2.)

Example using the stack torch method:

# define your components
c1 = Constant("c1", 0)
t1 = Constant("t1", torch.ones(1, 3))
t2 = Constant("t2", torch.ones(1, 3) * 2)
stack = Stack("stack")
show = Printer("print")

# connect the components
c1.outputs.out >> stack.inputs.dim
t1.outputs.out >> stack.inputs.tensors.select(0)
t2.outputs.out >> stack.inputs.tensors.select(1)
stack.outputs.out >> show.inputs.inp

# create the pipeline and add its nodes
pipeline = Pipeline()
pipeline.add_nodes([c1, t1, t2, stack, show])

# run your pipeline
pipeline.run(1)

torch.allclose(stack.outputs.out.value, torch.tensor([[1., 1., 1.],[2., 2., 2.]]))

Remember that the components can be run without the Pipeline, e.g in the last example you can also run:

asyncio.run(asyncio.gather(c1(), t1(), t2(), stack(), show()))

Basically, Pipeline objects allow you to control the execution flow, e.g. you can stop, pause, resume the execution, determine the number of executions to be run...

A higher level API on top of Pipeline is App allowing to encapsulate some code. E.g.:

class MyApp(App):
    def create_components(self):
        self.c1 = Constant("c1", 0)
        self.t1 = Constant("t1", torch.ones(1, 3))
        self.t2 = Constant("t2", torch.ones(1, 3) * 2)
        self.stack = stack("stack")
        self.show = Printer("print")

    def connect_components(self):
        self.c1.outputs.out >> self.stack.inputs.dim
        self.t1.outputs.out >> self.stack.inputs.tensors.select(0)
        self.t2.outputs.out >> self.stack.inputs.tensors.select(1)
        self.stack.outputs.out >> self.show.inputs.inp

MyApp().run(1)

Installation

from PyPI:

pip install limbus  # limbus alone
# or
pip install limbus[components]  # limbus + some predefined components

from the repository:

pip install limbus@git+https://git@github.com/kornia/limbus.git  # limbus alone
# or
pip install limbus[components]@git+https://git@github.com/kornia/limbus.git  # limbus + some predefined components

for development

you can install the environment with the following commands:

git clone https://github.com/kornia/limbus
cd limbus
source path.bash.inc

In order to regenerate the development environment:

cd limbus
rm -rf .dev_env
source path.bash.inc

Testing

Run pytest and automatically will test: cov, pydocstyle, mypy and flake8

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

limbus-0.1.2.dev0.tar.gz (25.0 kB view details)

Uploaded Source

Built Distribution

limbus-0.1.2.dev0-py2.py3-none-any.whl (27.9 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file limbus-0.1.2.dev0.tar.gz.

File metadata

  • Download URL: limbus-0.1.2.dev0.tar.gz
  • Upload date:
  • Size: 25.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for limbus-0.1.2.dev0.tar.gz
Algorithm Hash digest
SHA256 50303f3f2fe84f4cb9b664e4dfbca873dc003ac495745b3a4e948f792f07f934
MD5 aa74407b254fcb65c24ccd3ca97c5877
BLAKE2b-256 dfdc46dafb04d75d519d93cb0292c5f48be9ebb9e76072906d6ef2c108ceae88

See more details on using hashes here.

File details

Details for the file limbus-0.1.2.dev0-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for limbus-0.1.2.dev0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 cdee2acb6bc7bdb7e2cdd4b1448163f33b1f82868a6927d4a0d5ca3a2a2d5e8d
MD5 9fe6c703d593e9974c449e413006d2ef
BLAKE2b-256 88f00e8d191a388cc4e35ab7e1763644308c1fd258bf163962fe5fe82869113f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page