Skip to main content

Dynamic and static layer JSON serialization and deserializion of python objects

Project description

https://github.com/eblade/jsonobject/actions/workflows/python-app.yml/badge.svg https://img.shields.io/pypi/v/lindh-jsonobject.svg https://img.shields.io/pypi/l/lindh-jsonobject.svg https://codecov.io/gh/eblade/jsonobject/branch/master/graph/badge.svg

lindh-jsonobject

JSON serializable python3 objects.

Introduction

The purpose with lindh.jsonobject is to provide a way to serialize and deserialize python3 objects into and from JSON so that they can be communicated with other application and stored into document databases such as CouchDB.

Some code and inspiration comes from the Django project, and the objects behave much like such. However, while Django objects are meant for relational databases, these are meant to be used with complex objects in document databases.

Dependencies

There are no dependencies besides core python3.7+

Installation

This repository can be installed with pip.

pip install lindh-jsonobject

Example

>>> from json import dumps
>>> from lindh.jsonobject import Property, PropertySet, EnumProperty

>>> class Wheel(PropertySet):
...    diameter = Property(float, default=1.)

>>> class Rating(EnumProperty):
...    ok = 'ok'
...    bad = 'bad'
...    good = 'good'

>>> class Car(PropertySet):
...    wheels = Property(type=Wheel, is_list=True)
...    brand = Property()
...    model = Property()
...    rating = Property(enum=Rating, default=Rating.ok)

>>> volvo = Car(brand='Volvo', model='V70', rating=Rating.good)
>>> print(volvo.to_json())
{
  "*schema": "Car",
  "brand": "Volvo",
  "model": "V70",
  "rating": "good",
  "wheels": []
}

>>> volvo.wheels.append(Wheel(diameter=2.))
>>> print(volvo.to_json())
{
  "*schema": "Car",
  "brand": "Volvo",
  "model": "V70",
  "rating": "good",
  "wheels": [
    {
      "*schema": "Wheel",
      "diameter": 2.0
    }
  ]
}

>>> volvo.wheels.append(Wheel(diameter=2.))
>>> print(volvo.to_json())
{
  "*schema": "Car",
  "brand": "Volvo",
  "model": "V70",
  "rating": "good",
  "wheels": [
    {
      "*schema": "Wheel",
      "diameter": 2.0
    },
    {
      "*schema": "Wheel",
      "diameter": 2.0
    }
  ]
}

>>> volvo.wheels.append(Wheel(diameter=2.))
>>> volvo.wheels.append(Wheel())  # using default value here
>>> print(volvo.to_json())
{
  "*schema": "Car",
  "brand": "Volvo",
  "model": "V70",
  "rating": "good",
  "wheels": [
    {
      "*schema": "Wheel",
      "diameter": 2.0
    },
    {
      "*schema": "Wheel",
      "diameter": 2.0
    },
    {
      "*schema": "Wheel",
      "diameter": 2.0
    },
    {
      "*schema": "Wheel",
      "diameter": 1.0
    }
  ]
}

>>> volvo2 = Car.FromJSON(volvo.to_json())
>>> print(volvo2.to_json())
{
  "*schema": "Car",
  "brand": "Volvo",
  "model": "V70",
  "rating": "good",
  "wheels": [
    {
      "*schema": "Wheel",
      "diameter": 2.0
    },
    {
      "*schema": "Wheel",
      "diameter": 2.0
    },
    {
      "*schema": "Wheel",
      "diameter": 2.0
    },
    {
      "*schema": "Wheel",
      "diameter": 1.0
    }
  ]
}

Type Hinting

You can also specify types for properties with Type Hinting, if available:

>>> from json import dumps
>>> from typing import List
>>> from lindh.jsonobject import Property, PropertySet, EnumProperty

>>> class Wheel(PropertySet):
...    diameter: float = Property(default=1.)

>>> class Rating(EnumProperty):
...    ok = 'ok'
...    bad = 'bad'
...    good = 'good'

>>> class Car(PropertySet):
...    wheels: List[Wheel] = Property()
...    brand = Property()
...    model = Property()
...    rating: Rating = Property(default=Rating.ok)

>>> volvo = Car(brand='Volvo', model='V90', rating=Rating.good, wheels=[])
>>> volvo.wheels.append(Wheel(diameter=3.))
>>> print(volvo.to_json())
{
  "*schema": "Car",
  "brand": "Volvo",
  "model": "V90",
  "rating": "good",
  "wheels": [
    {
      "*schema": "Wheel",
      "diameter": 3.0
    }
  ]
}

Supported types:

  • str

  • int

  • float

  • bool

  • dict

  • typing.List[T] where T is a subclass of PropertySet

  • T where T is a subclass of EnumProperty

Schema-Less

There is also included a “schema-less” mode, found under lindh.jsonobject.noschema. The idea is to provide an easy-to-use read-only LINQ-like way of exploring JSON-like files. Here is a small example:

>>> from lindh.jsonobject import Dictionary
>>> d = Dictionary.load('tests/test.json')
>>> palle = (d.drivers
...     .where(lambda x: x.name == "Palle Kuling")
...     .join(d.cars, lambda driver, car: driver.car_brand == car.brand and driver.car_model == car.model)
...     .single())
>>> palle.rating
'good'

You can also use chained methods like select(expr), first() and extend(**items).

Author

lindh.jsonobject is written and maintained by Johan Egneblad <johan@egneblad.se>.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

lindh-jsonobject-2023.2.tar.gz (15.2 kB view details)

Uploaded Source

Built Distribution

lindh_jsonobject-2023.2-py3-none-any.whl (8.2 kB view details)

Uploaded Python 3

File details

Details for the file lindh-jsonobject-2023.2.tar.gz.

File metadata

  • Download URL: lindh-jsonobject-2023.2.tar.gz
  • Upload date:
  • Size: 15.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for lindh-jsonobject-2023.2.tar.gz
Algorithm Hash digest
SHA256 b8cca172e7704adf4a86974801145f58261cda437ac4c359f517b0582ac593b2
MD5 7a86c157d6adeb1ba928a562d3465362
BLAKE2b-256 a3138f0409c223616d71763fb944e65f40c622a66f391a091d5a4fdf32807a81

See more details on using hashes here.

File details

Details for the file lindh_jsonobject-2023.2-py3-none-any.whl.

File metadata

File hashes

Hashes for lindh_jsonobject-2023.2-py3-none-any.whl
Algorithm Hash digest
SHA256 15d3f67ff99cf9ee4495449295f44ad45cfbd11f0582b8e0305ad6e1a800a534
MD5 1b5f77f9f70185d7ec158eca71d1e445
BLAKE2b-256 03a5f9e5394b9980da482da20c93a8c99e29911b9311c4356bfbcc625e8f78d5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page