Skip to main content

Linear Panel, Instrumental Variable, Asset Pricing, and System Regression models for Python

Project description

Linear Models

Metric
Latest Release PyPI version
Continuous Integration Build Status
Coverage codecov
Code Quality Codacy Badge
codebeat badge
Citation DOI

Linear (regression) models for Python. Extends statsmodels with Panel regression, instrumental variable estimators, system estimators and models for estimating asset prices:

  • Panel models:

    • Fixed effects (maximum two-way)
    • First difference regression
    • Between estimator for panel data
    • Pooled regression for panel data
    • Fama-MacBeth estimation of panel models
  • High-dimensional Regresssion:

    • Absorbing Least Squares
  • Instrumental Variable estimators

    • Two-stage Least Squares
    • Limited Information Maximum Likelihood
    • k-class Estimators
    • Generalized Method of Moments, also with continuously updating
  • Factor Asset Pricing Models:

    • 2- and 3-step estimation
    • Time-series estimation
    • GMM estimation
  • System Regression:

    • Seemingly Unrelated Regression (SUR/SURE)
    • Three-Stage Least Squares (3SLS)
    • Generalized Method of Moments (GMM) System Estimation

Designed to work equally well with NumPy, Pandas or xarray data.

Panel models

Like statsmodels to include, supports formulas for specifying models. For example, the classic Grunfeld regression can be specified

import numpy as np
from statsmodels.datasets import grunfeld
data = grunfeld.load_pandas().data
data.year = data.year.astype(np.int64)
# MultiIndex, entity - time
data = data.set_index(['firm','year'])
from linearmodels import PanelOLS
mod = PanelOLS(data.invest, data[['value','capital']], entity_effects=True)
res = mod.fit(cov_type='clustered', cluster_entity=True)

Models can also be specified using the formula interface.

from linearmodels import PanelOLS
mod = PanelOLS.from_formula('invest ~ value + capital + EntityEffects', data)
res = mod.fit(cov_type='clustered', cluster_entity=True)

The formula interface for PanelOLS supports the special values EntityEffects and TimeEffects which add entity (fixed) and time effects, respectively.

Formula support comes from the formulaic package which is a replacement for patsy.

Instrumental Variable Models

IV regression models can be similarly specified.

import numpy as np
from linearmodels.iv import IV2SLS
from linearmodels.datasets import mroz
data = mroz.load()
mod = IV2SLS.from_formula('np.log(wage) ~ 1 + exper + exper ** 2 + [educ ~ motheduc + fatheduc]', data)

The expressions in the [ ] indicate endogenous regressors (before ~) and the instruments.

Installing

The latest release can be installed using pip

pip install linearmodels

The main branch can be installed by cloning the repo and running setup

git clone https://github.com/bashtage/linearmodels
cd linearmodels
pip install .

Documentation

Stable Documentation is built on every tagged version using doctr. Development Documentation is automatically built on every successful build of main.

Plan and status

Should eventually add some useful linear model estimators such as panel regression. Currently only the single variable IV estimators are polished.

  • Linear Instrumental variable estimation - complete
  • Linear Panel model estimation - complete
  • Fama-MacBeth regression - complete
  • Linear Factor Asset Pricing - complete
  • System regression - complete
  • Linear IV Panel model estimation - not started
  • Dynamic Panel model estimation - not started

Requirements

Running

  • Python 3.9+
  • NumPy (1.22+)
  • SciPy (1.8+)
  • pandas (1.4+)
  • statsmodels (0.12+)
  • formulaic (1.0.0+)
  • xarray (0.16+, optional)
  • Cython (3.0.10+, optional)

Testing

  • py.test

Documentation

  • sphinx
  • sphinx-immaterial
  • nbsphinx
  • nbconvert
  • nbformat
  • ipython
  • jupyter

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

linearmodels-6.1.tar.gz (1.8 MB view details)

Uploaded Source

Built Distributions

linearmodels-6.1-cp313-cp313-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.13 Windows x86-64

linearmodels-6.1-cp313-cp313-musllinux_1_2_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ x86-64

linearmodels-6.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

linearmodels-6.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ ARM64

linearmodels-6.1-cp313-cp313-macosx_11_0_arm64.whl (1.7 MB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

linearmodels-6.1-cp313-cp313-macosx_10_13_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.13 macOS 10.13+ x86-64

linearmodels-6.1-cp312-cp312-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.12 Windows x86-64

linearmodels-6.1-cp312-cp312-musllinux_1_2_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

linearmodels-6.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

linearmodels-6.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

linearmodels-6.1-cp312-cp312-macosx_11_0_arm64.whl (1.7 MB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

linearmodels-6.1-cp312-cp312-macosx_10_13_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

linearmodels-6.1-cp311-cp311-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.11 Windows x86-64

linearmodels-6.1-cp311-cp311-musllinux_1_2_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

linearmodels-6.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

linearmodels-6.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

linearmodels-6.1-cp311-cp311-macosx_11_0_arm64.whl (1.7 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

linearmodels-6.1-cp311-cp311-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

linearmodels-6.1-cp310-cp310-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.10 Windows x86-64

linearmodels-6.1-cp310-cp310-musllinux_1_2_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

linearmodels-6.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

linearmodels-6.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

linearmodels-6.1-cp310-cp310-macosx_11_0_arm64.whl (1.7 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

linearmodels-6.1-cp310-cp310-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

linearmodels-6.1-cp39-cp39-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

linearmodels-6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

linearmodels-6.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

linearmodels-6.1-cp39-cp39-macosx_11_0_arm64.whl (1.7 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

linearmodels-6.1-cp39-cp39-macosx_10_9_x86_64.whl (1.7 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

File details

Details for the file linearmodels-6.1.tar.gz.

File metadata

  • Download URL: linearmodels-6.1.tar.gz
  • Upload date:
  • Size: 1.8 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.3

File hashes

Hashes for linearmodels-6.1.tar.gz
Algorithm Hash digest
SHA256 74ead48a054bc1b3ebec8e8d7187f17504058891b70c2e090372b4759eeb3e89
MD5 ab5536239cb968848eadfe797b67bf4c
BLAKE2b-256 5d295832251711d28242f17f76acce05071639f6ee08fa3178fb0cde5afaeb40

See more details on using hashes here.

File details

Details for the file linearmodels-6.1-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for linearmodels-6.1-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 628be681f59a07da0848174974cc0d331fc5daf2367d37f27aec94b7e8e16e70
MD5 f010178eec90d8a04918fa926f345d9a
BLAKE2b-256 a164f3074341a13b51a1357186abd4d29969765d2112aff4ff28cfea44e6fe21

See more details on using hashes here.

File details

Details for the file linearmodels-6.1-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for linearmodels-6.1-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 f020b98e852006ab2731b5508c4190017075197cf8563f0cd81838edf4b05e7d
MD5 3638b70dac754b64d5c44eb2d2c2927b
BLAKE2b-256 77ec6d3e9c1580074e57f5c26375aafae68f5248bc82fce0451057f965cf38e9

See more details on using hashes here.

File details

Details for the file linearmodels-6.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for linearmodels-6.1-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6e27671f6a25bbf81a731630e6a66c3befc955ecc82e402f08b067d61a1ebf2a
MD5 926378c8b8ab7ee542f679af5605af0b
BLAKE2b-256 46d094525a3c2b84213324bd4f3165e42a2bc532926ba9ecd30846817d80a610

See more details on using hashes here.

File details

Details for the file linearmodels-6.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for linearmodels-6.1-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 08f612bd0c2968beae4016a79b8a802bd91fcafb7149bb918bffca0d766ea46a
MD5 6eb22aebc6e784f3a9690cb42d7e204f
BLAKE2b-256 e39f9fbf7384b39c69f05f5045e1f346fa20ad147328da4f53549eb892c8f858

See more details on using hashes here.

File details

Details for the file linearmodels-6.1-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for linearmodels-6.1-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 79f1bb320ff6a5ac0fc350989d5818a7cd1f888975b04f38a8c10b90b194d718
MD5 858a4495714161ab3fa8dbedefe540ca
BLAKE2b-256 40b6a0584af03885bd6cc57d483b7573f72ee152d7d1717f29227c73e3db4233

See more details on using hashes here.

File details

Details for the file linearmodels-6.1-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for linearmodels-6.1-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 7a9e6f96ec3b048265befa38069c66a3a2a98612afddf62cd6a95026af445b9c
MD5 1572aae602dae87c28576414c72dcf86
BLAKE2b-256 86907db827b3e8d1b82b07db9dfc75f007f71c68d72c64fc9b141fb46dbd2839

See more details on using hashes here.

File details

Details for the file linearmodels-6.1-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for linearmodels-6.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 18b827f96db5c7406bbdfe00dab386385b93e8b8727a6cc033e725f53dbfa066
MD5 3c7c5b207c4ec156f8fc569c8259410f
BLAKE2b-256 d145e115550ca9fb23d20a84d695b2835c848886a4ad0b305d90ec28b5a57e00

See more details on using hashes here.

File details

Details for the file linearmodels-6.1-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for linearmodels-6.1-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 ce5f44b5c1ff4110c69f02f2a41afec2cd46ed5e135c7adfb929322d82369fca
MD5 a11c3c1f181896f9e989b5df9f4205ec
BLAKE2b-256 ed1142ac4440f5b457ee690af562b0c0a28d3924b567ff468355412a3fed99f7

See more details on using hashes here.

File details

Details for the file linearmodels-6.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for linearmodels-6.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 04cee9532a1c3fa583dc906e0da575f43be6bb8b2078ed7a09282c0d47a7304b
MD5 bab9676555de39d5ad2ca2e5bf3a9eb4
BLAKE2b-256 387e68bccf0a3dd8441decde26a9db838e6ad924d38f48502a3c1f9f2ed0be9f

See more details on using hashes here.

File details

Details for the file linearmodels-6.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for linearmodels-6.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 061788d634991d1bccf5f62cb6f7abcea15cdb4e66a4b1861f13e6ba9915c4ab
MD5 0ab565c49ba1e1dcb7fcf9f52978a5ec
BLAKE2b-256 771163654bfcbd132edc88776f580f558d87de0e751d38884684b258dd99628c

See more details on using hashes here.

File details

Details for the file linearmodels-6.1-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for linearmodels-6.1-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6f872ad46571f8f10f4d37006a2561470c42f6bc0553b717bae4bb1233951ae1
MD5 134fd967623fa51f6da34f294e378cce
BLAKE2b-256 b856153635a878fa4158a565e6f5e326e50951f3dc32fa084064eafd9e92a89a

See more details on using hashes here.

File details

Details for the file linearmodels-6.1-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for linearmodels-6.1-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 39ef5f2a9280b6a11b4be073d860a1f2e0b4b7ee98a2fb07cfe903b5faa96e00
MD5 1d191403c1e785c4d107f9438f308ccb
BLAKE2b-256 33c0c49ff24fde19c2d50997368d905b3777f5523e2700e2019f8b17cf9e03f8

See more details on using hashes here.

File details

Details for the file linearmodels-6.1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for linearmodels-6.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 89bb4fdfa4aecad4f743fc06f9014c702a4a98a7ec5ad005cbaa6798ffad8381
MD5 123ef06581c5d99fe7ebc4a92271a67d
BLAKE2b-256 240f0fb67ccbd48aea1e14cf7d24704c198fea14f08ddc9fa7c3e23ed0d6ea7e

See more details on using hashes here.

File details

Details for the file linearmodels-6.1-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for linearmodels-6.1-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 17822f49bbc02b4aea748c8be0fe86ac2bcd928a6f43566cd3a0d19cc61a1606
MD5 01f7c64bc66164398ea6426e827a55aa
BLAKE2b-256 81dba4698094b04298f7200c078be9a8ca7d45685e191186611a17c04bdd2995

See more details on using hashes here.

File details

Details for the file linearmodels-6.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for linearmodels-6.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2688c1f359171b9a54ae4f1c9f5aae9858f878fc40c6cb647a3a76bdccafd6a7
MD5 dd771161478e4d1cb8bf022c2f983ab8
BLAKE2b-256 4e0aa3e622f4ac4d6f0d31d09912244b5c6789325ef4aa5daa4e521d06aff00c

See more details on using hashes here.

File details

Details for the file linearmodels-6.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for linearmodels-6.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 151d48882005843935bf42fe9bd3b6ba3043320319701176a1f49db04a3b015a
MD5 2411daf8cf0a2f615d4c54917bba6209
BLAKE2b-256 19b7d3d276ba7c1228c28863d80f0853d89f253a7236d6fb1aa71474f5878ef5

See more details on using hashes here.

File details

Details for the file linearmodels-6.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for linearmodels-6.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2d68d09deda6a88134c2a37f5f3d9c9da01e999e7ec0520736d73365f5f438cd
MD5 54203956fe2347bdbcf02e56e6be81ae
BLAKE2b-256 b22dfa7774f1e340655cbb26dc2dd09e6e4e1e989ee05cc43395ed5e9e6fc83e

See more details on using hashes here.

File details

Details for the file linearmodels-6.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for linearmodels-6.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c31fc62766a088a91969ad4fedf5c95eb5176fee67d595178642a2ebdc8757ce
MD5 d71b19fc473bbdb15cd05e19a3c6c87a
BLAKE2b-256 f2b862297d76f848972085f1020650764fb676471193e6211ecad4b61ea51682

See more details on using hashes here.

File details

Details for the file linearmodels-6.1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for linearmodels-6.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 e3b260dfdf8ba7f47d478d4cb37fb9743719166901e837f7686b014ab416e9ef
MD5 7ec7b72dadc38ceb7e6450e8fe2a0604
BLAKE2b-256 1173030e9b5c588fe859ef1aae83921883ef2f34be6abb694cfbfedbde3dc4b4

See more details on using hashes here.

File details

Details for the file linearmodels-6.1-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for linearmodels-6.1-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 fe72fff0ce415727a5a56f3c30b68b2493f1453fe3ad994942177f8e99a44a6a
MD5 59d17849929333578721a6e369135c0f
BLAKE2b-256 8ed53bcb5f3220eaaa51b5e2cee5205d820ab6005aec9bf3a56168a71c9bf679

See more details on using hashes here.

File details

Details for the file linearmodels-6.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for linearmodels-6.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 39b2445a4c75f8e5ce663d2219e5f34adeb110bccf40fd54c0b5106366fb0ab1
MD5 3c6935d16f7e78f59fc5de2f69b41e55
BLAKE2b-256 86f490512573b35c98478e93d6d22e8b05d3371b259b6af7f4e75638b6372c48

See more details on using hashes here.

File details

Details for the file linearmodels-6.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for linearmodels-6.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fc1a2b33b10b5f9844219feb4e21b509cbaa923b3acc5456881f25b1504cbce8
MD5 7f350116858a4efa098c0103f2874abb
BLAKE2b-256 010268f9479b4875e149c2ddf927abe8efaba1978ca2e719ebe262143b4c7d6b

See more details on using hashes here.

File details

Details for the file linearmodels-6.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for linearmodels-6.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 263e4d2bda42240a0e380a806296ca54bb5f1e10a293f81b8a2a142f7b6512d3
MD5 c7e56f2ed97572e4f37f68044a460629
BLAKE2b-256 7e2eedf1ba569e5d7c25103f2ef1a67dd5a4f8bd125e6146d57a8cef1b938767

See more details on using hashes here.

File details

Details for the file linearmodels-6.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for linearmodels-6.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c9ab6f960fbd3060bccd28a20d9d4e29acda09158c1577e930c8c862af51a4a7
MD5 e04ddee676290af3625a62fca2cad148
BLAKE2b-256 fd7ecbf9a22027f9bc8136c4ab9fe34e7b160103d8d0d2e09fd29125e9b6d4dd

See more details on using hashes here.

File details

Details for the file linearmodels-6.1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for linearmodels-6.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c342b0a6aa5819901cde646f4d6a9da3387aad40e49bed792fcb5e57b6624246
MD5 511c2e8d6cbe5a331e05a1e238be82de
BLAKE2b-256 efeb5cfba10824d4e55a167f664d232b13ec15483ff34c3ca6f035d5f989da5a

See more details on using hashes here.

File details

Details for the file linearmodels-6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for linearmodels-6.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5d81a96566087c61955db44e402e181484582300f7a05b3e27d65a87538ce0f3
MD5 bbe66eb40542d861a05beeb06405b674
BLAKE2b-256 6ac8308a5b8589027acaa90bba9da5311deb8ef258cbb57e8dd9b79360a3fe47

See more details on using hashes here.

File details

Details for the file linearmodels-6.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for linearmodels-6.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6f5a430361707ba79fb91fd4bf5acd85c7d4b41f0c964747d864ff3409bbfff6
MD5 ef91084f9107fa638dcb589b97506b90
BLAKE2b-256 275f9d247b12b2a90396505d77d3558d4308239ddaa7eba8e926c0cd2f0e2ef8

See more details on using hashes here.

File details

Details for the file linearmodels-6.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for linearmodels-6.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8eb8f2290608bd8c8e7965dec22399cf498a38a70692bb5d5a5b0dbddca4658e
MD5 42205d24c1cb11a3d910f56a5ba1f6d6
BLAKE2b-256 61ecb37b80798f723d9279b2b0e2ee6083ae76c4e14acc5a227838761915ae4a

See more details on using hashes here.

File details

Details for the file linearmodels-6.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for linearmodels-6.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 d9db86e757dfcd03e0c95a654fba72a7f5c9b42e1b7fe73dd240fc929aefa854
MD5 62e5bc4b914781276d15c6244e5f0eb7
BLAKE2b-256 0069659dfade0ba7cd6bbae08488ae4f060f192c987626196b4970bf58829f07

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page