Skip to main content

linefit ground segmentation algorithm Python bindings

Project description

linefit

Stable Version Python Versions Download Stats

linefit is a ground segmentation algorithm for 3D point clouds. This repo we setup a python binding for the original C++ code and push to pypi for easy installation through pip install linefit.

Author: C++ code from Lorenz Wellhausen, nanobind by Qingwen Zhang.

Running on macOS, Windows and Linux, with Python Version >= 3.8.

Available in:

📜 Change Log:

  • 2024-07-03: Speed up nanobind np.array <-> std::vector<Eigen:: Vector3d> conversion and also NOMINSIZE in make. Speed difference: 0.1s -> 0.01s. Based on discussion here.
  • 2024-02-15: Initial version.

0. Setup

Choose one of the following options to install the package (recommended to use Option A pip install linefit):

Option A: Install from pypi pip install linefit

Option B: Clone this repo and run following to build:

cmake -B build && cmake --build build
pip install .
python3 -c 'import linefit; print("success")'

1. Run the example

After installation, you can run the example by, it will directly show a default effect of demo data.

python example.py

A window will pop up and show the ground segmentation result.

Parameter description

TL;DR: tune the sensor_height to offset the ground point z to 0. Others are optional for better performance. If you are interested in the details, please read the following.

Parameters are set in assets/config.toml

This algorithm works on the assumption that you known the height of the sensor above ground. Therefore, you have to adjust the sensor_height to your robot specifications, otherwise, it will not work.

The default parameters should work on the KITTI dataset.

Ground Condition

  • sensor_height Sensor height above ground.
  • max_dist_to_line maximum vertical distance of point to line to be considered ground.
  • max_slope Maximum slope of a line.
  • min_slope Minimum slope of a line.
  • max_fit_error Maximum error a point is allowed to have in a line fit.
  • max_start_height Maximum height difference between new point and estimated ground height to start a new line.
  • long_threshold Distance after which the max_height condition is applied.
  • max_height Maximum height difference between line points when they are farther apart than long_threshold.
  • line_search_angle How far to search in angular direction to find a line. A higher angle helps fill "holes" in the ground segmentation.

Segmentation

  • r_min Distance at which segmentation starts.
  • r_max Distance at which segmentation ends.
  • n_bins Number of radial bins.
  • n_segments Number of angular segments.

Other

  • n_threads Number of threads to use.

Acknowledgement & Citation

The original C++ code is from the repo we forked: lorenwel/linefit_ground_segmentation.

The original methods are described in the following paper:

@inproceedings{himmelsbach2010fast,
  title={Fast segmentation of 3d point clouds for ground vehicles},
  author={Himmelsbach, Michael and Hundelshausen, Felix V and Wuensche, H-J},
  booktitle={Intelligent Vehicles Symposium (IV), 2010 IEEE},
  pages={560--565},
  year={2010},
  organization={IEEE}
}

More python binding examples can be found in our other project:

  • dufomap: a dynamic awareness mapping framework. Remove dynamic points in a raw map.
  • dztimer: a breakout timer for python code.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

linefit-1.0.1-pp310-pypy310_pp73-win_amd64.whl (127.9 kB view details)

Uploaded PyPy Windows x86-64

linefit-1.0.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (159.3 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

linefit-1.0.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl (107.4 kB view details)

Uploaded PyPy macOS 11.0+ ARM64

linefit-1.0.1-pp310-pypy310_pp73-macosx_10_14_x86_64.whl (117.6 kB view details)

Uploaded PyPy macOS 10.14+ x86-64

linefit-1.0.1-pp39-pypy39_pp73-win_amd64.whl (127.9 kB view details)

Uploaded PyPy Windows x86-64

linefit-1.0.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (159.5 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

linefit-1.0.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl (107.5 kB view details)

Uploaded PyPy macOS 11.0+ ARM64

linefit-1.0.1-pp39-pypy39_pp73-macosx_10_14_x86_64.whl (117.7 kB view details)

Uploaded PyPy macOS 10.14+ x86-64

linefit-1.0.1-pp38-pypy38_pp73-win_amd64.whl (127.8 kB view details)

Uploaded PyPy Windows x86-64

linefit-1.0.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (159.4 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

linefit-1.0.1-pp38-pypy38_pp73-macosx_11_0_arm64.whl (107.5 kB view details)

Uploaded PyPy macOS 11.0+ ARM64

linefit-1.0.1-pp38-pypy38_pp73-macosx_10_14_x86_64.whl (117.7 kB view details)

Uploaded PyPy macOS 10.14+ x86-64

linefit-1.0.1-cp312-abi3-win_amd64.whl (129.3 kB view details)

Uploaded CPython 3.12+ Windows x86-64

linefit-1.0.1-cp312-abi3-musllinux_1_1_x86_64.whl (489.4 kB view details)

Uploaded CPython 3.12+ musllinux: musl 1.1+ x86-64

linefit-1.0.1-cp312-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (161.6 kB view details)

Uploaded CPython 3.12+ manylinux: glibc 2.17+ x86-64

linefit-1.0.1-cp312-abi3-macosx_11_0_arm64.whl (109.5 kB view details)

Uploaded CPython 3.12+ macOS 11.0+ ARM64

linefit-1.0.1-cp312-abi3-macosx_10_14_x86_64.whl (120.8 kB view details)

Uploaded CPython 3.12+ macOS 10.14+ x86-64

linefit-1.0.1-cp311-cp311-win_amd64.whl (130.0 kB view details)

Uploaded CPython 3.11 Windows x86-64

linefit-1.0.1-cp311-cp311-musllinux_1_1_x86_64.whl (490.9 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

linefit-1.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (162.7 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

linefit-1.0.1-cp311-cp311-macosx_11_0_arm64.whl (110.2 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

linefit-1.0.1-cp311-cp311-macosx_10_14_x86_64.whl (121.6 kB view details)

Uploaded CPython 3.11 macOS 10.14+ x86-64

linefit-1.0.1-cp310-cp310-win_amd64.whl (130.2 kB view details)

Uploaded CPython 3.10 Windows x86-64

linefit-1.0.1-cp310-cp310-musllinux_1_1_x86_64.whl (491.0 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

linefit-1.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (162.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

linefit-1.0.1-cp310-cp310-macosx_11_0_arm64.whl (110.6 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

linefit-1.0.1-cp310-cp310-macosx_10_14_x86_64.whl (121.8 kB view details)

Uploaded CPython 3.10 macOS 10.14+ x86-64

linefit-1.0.1-cp39-cp39-win_amd64.whl (130.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

linefit-1.0.1-cp39-cp39-musllinux_1_1_x86_64.whl (491.2 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

linefit-1.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (163.1 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

linefit-1.0.1-cp39-cp39-macosx_11_0_arm64.whl (110.7 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

linefit-1.0.1-cp39-cp39-macosx_10_14_x86_64.whl (122.1 kB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

linefit-1.0.1-cp38-cp38-win_amd64.whl (130.3 kB view details)

Uploaded CPython 3.8 Windows x86-64

linefit-1.0.1-cp38-cp38-musllinux_1_1_x86_64.whl (490.7 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

linefit-1.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (162.8 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

linefit-1.0.1-cp38-cp38-macosx_11_0_arm64.whl (110.1 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

linefit-1.0.1-cp38-cp38-macosx_10_14_x86_64.whl (121.7 kB view details)

Uploaded CPython 3.8 macOS 10.14+ x86-64

File details

Details for the file linefit-1.0.1-pp310-pypy310_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for linefit-1.0.1-pp310-pypy310_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 73fd0a934c53b0993005037ed68e5f6266dd67c0dffcd0f5a68cb393a038ac1b
MD5 6e22f3afd3a71a19c299d9ec8ea8b846
BLAKE2b-256 617441e64e59d188cc016a9ccd4f75513308b12e5dd2b8fe016986bad6d32dba

See more details on using hashes here.

File details

Details for the file linefit-1.0.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for linefit-1.0.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 960259214295c543e7f062db0f7d59166c6bbf1fd70dfb2c3d57d9f9c3ababd0
MD5 ea254c3dec6fd06c9d4aeeec4156955f
BLAKE2b-256 6a214f01287dc36521d2516ff16aff5e55607bfad017603af5b89a0a9581e763

See more details on using hashes here.

File details

Details for the file linefit-1.0.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for linefit-1.0.1-pp310-pypy310_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 95d2c122c6aeb6c027a806d850d5f88760d708da34f9fbffb9f9c2cb0acc9401
MD5 08c753a968dfcf3766a691c453376a76
BLAKE2b-256 4fdd323428dc2b3463eba637a714f4b5ef0e518e75d649de0a73a340d82bc090

See more details on using hashes here.

File details

Details for the file linefit-1.0.1-pp310-pypy310_pp73-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for linefit-1.0.1-pp310-pypy310_pp73-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 5c9cfac40c9a430732cd2bf13a5a342df6a65d6e05935018d6e2acd96110867a
MD5 6aa6cf83e063e81300fb036241ab72e5
BLAKE2b-256 5ec4874395d178b984d906a3dcc7f18241b8f57d429da9caa80e61bd73d87972

See more details on using hashes here.

File details

Details for the file linefit-1.0.1-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for linefit-1.0.1-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 3759bac58f1758e54716c123cf0ae7921fce9db59618a7aa6077031a6ba70504
MD5 5590c7ec75ff01944b25630d5e4cf70e
BLAKE2b-256 ca675fb59aeda1467527bc80145c3fef4521edf9bc5092dec0bc5686cc1f29c8

See more details on using hashes here.

File details

Details for the file linefit-1.0.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for linefit-1.0.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bf1978465d8c40c098f78f0c6d17821f41958f306ee273ca44ff2dafb51f4ec2
MD5 b28f677fe018417680f47bc850d48053
BLAKE2b-256 9ba29975effae66766d7d67066764a76825085de58b223d7a2491b5c3bec71a8

See more details on using hashes here.

File details

Details for the file linefit-1.0.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for linefit-1.0.1-pp39-pypy39_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 53b380119cead1bd41fc0f7ad84f84a91ede488961d6b644e5fa2947c30a2d56
MD5 8cf83102c536078ec888112b8cb03ecc
BLAKE2b-256 62111bfcf400c4120715e872cc4c0d1a0d960002046749524430d6dbc81c7483

See more details on using hashes here.

File details

Details for the file linefit-1.0.1-pp39-pypy39_pp73-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for linefit-1.0.1-pp39-pypy39_pp73-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 9af9ec7b144aa79a6f6fd7ae19ff8ac340012383c8e5a3b21f6ad8dc25d7cfd2
MD5 4e7fe075331235c8454e50453ab4b460
BLAKE2b-256 15cde187dab52d11399173c631b47f7442339d27757d2a5ca80b479dae290f50

See more details on using hashes here.

File details

Details for the file linefit-1.0.1-pp38-pypy38_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for linefit-1.0.1-pp38-pypy38_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 e2de1cd755bbd64f7a80f9dc7cc43b80e0025edf89fdfaf48946ba6c11c00c3a
MD5 402800a2e3a66e10c915a2b8cdf6b80d
BLAKE2b-256 8246ec1e5af56bd748d70da66fb7785beb415501d95f6e0efd6d3164eb5d0517

See more details on using hashes here.

File details

Details for the file linefit-1.0.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for linefit-1.0.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5779918bfb9418f7d9fda5b2d4c51a49af939f25046d9e1b436bd55e2af2bbbd
MD5 6efb953767b31e1c0fc720766dacc90d
BLAKE2b-256 3996c369de7fec0d14f60c825dcc4fd9dd40c25155a25188f46a18ea1c42832f

See more details on using hashes here.

File details

Details for the file linefit-1.0.1-pp38-pypy38_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for linefit-1.0.1-pp38-pypy38_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 29870c97b688db2dd593dc0d6a36ad6fcf6b418db4adb99890458911144bfa6a
MD5 862e5bbefe965535bd14510a73c9e844
BLAKE2b-256 aabfbbb8f6126daece085e0dd1d1860a045877ef141d88b0d7070d17341a5285

See more details on using hashes here.

File details

Details for the file linefit-1.0.1-pp38-pypy38_pp73-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for linefit-1.0.1-pp38-pypy38_pp73-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 d4f30fc96512ebbbca3d1220a8b3fd84b11e130e65f9dd5c0b4644a56e023948
MD5 a14cb733c2ac91766b7e226d7b7bfeda
BLAKE2b-256 7c606ac88fc684fef91aa10127387e7531f0cc87717b42638bb743607804f1be

See more details on using hashes here.

File details

Details for the file linefit-1.0.1-cp312-abi3-win_amd64.whl.

File metadata

  • Download URL: linefit-1.0.1-cp312-abi3-win_amd64.whl
  • Upload date:
  • Size: 129.3 kB
  • Tags: CPython 3.12+, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for linefit-1.0.1-cp312-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 0b9e698d09b4dab69ffb191c16d797b8114ec7fbed1e1c0784caa2f6d4a21a90
MD5 12782243c07ce95244b8d4e244958447
BLAKE2b-256 a1714fa66c772c4d6854afe6bb79de4cf8fef196cbf64ec601f62a3afca17ce2

See more details on using hashes here.

File details

Details for the file linefit-1.0.1-cp312-abi3-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for linefit-1.0.1-cp312-abi3-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 4cccef1158c700bd0b3534e1a48bb21114f4bd2faa93d59310940a7e27f2d8bf
MD5 35e2336f299cce33726be414d5bbfa30
BLAKE2b-256 74b4d4e3156283748230beebb9a8319f4bece7e016b47ce73d78c92584c20115

See more details on using hashes here.

File details

Details for the file linefit-1.0.1-cp312-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for linefit-1.0.1-cp312-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 30846e66d00e14462b356654f167b613459824f7014142190568a028ca57eb61
MD5 f7b494623a1073211d8a924e3c571c14
BLAKE2b-256 c4fcec951402f3cdbc28c2c6457c0583e0a1b51255259b9e29f9b831f5c1b292

See more details on using hashes here.

File details

Details for the file linefit-1.0.1-cp312-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for linefit-1.0.1-cp312-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c6b004d051df6e1b4a95f687ca57a87941e050d0f433a3b7b3d6326a31d4975b
MD5 343c39542b5f9b76402e5fcccf4bd218
BLAKE2b-256 2998bd5428b409f32279b5f388508769c0360d4daf248a441489ecd351156c58

See more details on using hashes here.

File details

Details for the file linefit-1.0.1-cp312-abi3-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for linefit-1.0.1-cp312-abi3-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 1fd546ad750b9774ea2ca37a3ecfb40a28e956edbf3d37cfb0c100432b4e87a3
MD5 19a2f6d39352d66361003e920d00e991
BLAKE2b-256 363055e43125bc5ba6a2300941e7dd6e0923aa3e95d71094ee05cf3503d1d8bb

See more details on using hashes here.

File details

Details for the file linefit-1.0.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: linefit-1.0.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 130.0 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for linefit-1.0.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 1a00aa6ad3fa92884dc9869aa97dc2cd0991d4518b034ced4516dd0ec5d95638
MD5 3baee76ebbf8c18cf1b0cd5e3d24f664
BLAKE2b-256 b07435757df01888f9d963a07a5777844a7c4ed42bb3959125187e4fbd69ab94

See more details on using hashes here.

File details

Details for the file linefit-1.0.1-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for linefit-1.0.1-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 021de9feeec0d9680f2f8b8ca65b4cdaab0a3a52c6c6fe3562437baf90298696
MD5 4ef73effb4d4936a8b1523bf946c27a2
BLAKE2b-256 1645688d942b5b48bb9c2c04901f879c766efc0c244e8457653ac97bd1a8f994

See more details on using hashes here.

File details

Details for the file linefit-1.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for linefit-1.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 895b43bef205fb37aa92346781580f0b5df13b599da3dc704ad0a2237bd03831
MD5 39d2ef9304f48d800271d249982ce4e5
BLAKE2b-256 fb4fa40c139a51b7f7763c4eb3579b3e2bb5fbe82c256dc494472d09d322f8d5

See more details on using hashes here.

File details

Details for the file linefit-1.0.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for linefit-1.0.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0564a90aaa1b3caa0f0cedfeab072e871e88fadb262123d55b88ea7a6c295c0d
MD5 f07ce2325b1d53041e501d9b025c35d7
BLAKE2b-256 c1be7d911103798efb42cff0ffd48d394d3764a0fa0c0b1013a6e2f72b1211c0

See more details on using hashes here.

File details

Details for the file linefit-1.0.1-cp311-cp311-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for linefit-1.0.1-cp311-cp311-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 4e5d1f2642d09d4b64cbc265d3df4ac86096e293e8306e76122034bbd1d26c04
MD5 d21dcfe0a3f083e1a2c07457b12040a3
BLAKE2b-256 d3f5da3a76b24935400304c9490637dbc8e83a3c567f28b8f422c6f10cd07aa3

See more details on using hashes here.

File details

Details for the file linefit-1.0.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: linefit-1.0.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 130.2 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for linefit-1.0.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 3b28c65880f199ca5f237a9a893aa82732018f752b8589dbd4fac6a080c6fa12
MD5 d160bddb7c97f4e4266d635943a5e3e8
BLAKE2b-256 48c32776022843c54c78b660afac442565c822883928f0c54859ead962815c29

See more details on using hashes here.

File details

Details for the file linefit-1.0.1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for linefit-1.0.1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 3c67454bde482aefa4ab35e26d1b6b611b1049be1b051f9a3763da08ae261d44
MD5 df27ab0adf4a15eea79b0a228f209bc9
BLAKE2b-256 96462c84d7bb5fadab6e8ece00740b9de9deb317a9d02fd7881bd9f8b9ecbcf0

See more details on using hashes here.

File details

Details for the file linefit-1.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for linefit-1.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0e56674aec4027901b8629228babfe34c84e76d2b1b84af50a38451cb326ac81
MD5 5ee48f91c4ef0c3694ba6f8c4c407247
BLAKE2b-256 28d359c268933e611525cb1ca0e0bc4c782e7305f7e2f721fa5346566d2369c7

See more details on using hashes here.

File details

Details for the file linefit-1.0.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for linefit-1.0.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b8b78906936ed967e31370bb67b1963a193f30aa51a4b37b1c502e4bd79a58da
MD5 e9ffa544b96f1a4fa97b21182c8a259c
BLAKE2b-256 b4f8df4db556663895f8c674d318553071797122436cf12aa250ea96d4afd768

See more details on using hashes here.

File details

Details for the file linefit-1.0.1-cp310-cp310-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for linefit-1.0.1-cp310-cp310-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 e9226ae6ee291ef1cc17c624ea5548f657298878a47a3180af97da489ab074b8
MD5 2b5a7f67d65884927ae275a386bb5a3f
BLAKE2b-256 bc64eba437c3d3ecb1afd935f3ec5d382783e5dcea96e1d006b6829b158dee04

See more details on using hashes here.

File details

Details for the file linefit-1.0.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: linefit-1.0.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 130.6 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for linefit-1.0.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 1fd9405df29af4984cb23eb8f07ff0af437d8bcbadbe7c802de1594d84205e19
MD5 7ed48ba50deb438b765aede5794312c4
BLAKE2b-256 42ef7e1592e063387cf24d35839835ea0670d179c8177f0922d37b4357a494e6

See more details on using hashes here.

File details

Details for the file linefit-1.0.1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for linefit-1.0.1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 8a5151c0e5b40dbe037609c8223a02997fb2bcc20e0bbe826b1a798b56a04c07
MD5 37919e86188a95508cc4f23c5ce3d9b9
BLAKE2b-256 4dc956444e712ccbbeee7f0f9428098ab148da8ca2449d0bb4f79a096d7089a8

See more details on using hashes here.

File details

Details for the file linefit-1.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for linefit-1.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bac296fe5e8f80fa3b069bedd59142954518cdef3d4043dff28bbcc4292cb178
MD5 33e5c923800ec2deab87f5958e096c3c
BLAKE2b-256 0ee842e6e0971be72ae1140c2eca162d25daa6898fb711693cadc329898a63a6

See more details on using hashes here.

File details

Details for the file linefit-1.0.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for linefit-1.0.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 182b675f25dde4f4e7fd785ed86244cf3251413ec10d16736ab0eeaeebe6f6e9
MD5 4f8db4c033b28444c715d0b5e84cbeba
BLAKE2b-256 2c39f42c413c6a1e5359bb063b1aca6fff047e599d5354dc7ba5632e8df6a8be

See more details on using hashes here.

File details

Details for the file linefit-1.0.1-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for linefit-1.0.1-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 6418a14a54abf415a3b38aae11e0abd9fe893986d3e002e68797072766c964dd
MD5 22d3a3bc20eb17057840443ddd479e41
BLAKE2b-256 e7e3bcd486258c66a86b84ed10077f165227cb0213e2a6da7b796fc27357509f

See more details on using hashes here.

File details

Details for the file linefit-1.0.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: linefit-1.0.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 130.3 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.4

File hashes

Hashes for linefit-1.0.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 4eae8be880a61302a48d31e7b66af92642c453a2ec7f46ec2452ef716b5d86e0
MD5 3b1d05084ea3c4752c7f355e54cbfebb
BLAKE2b-256 bd9e8fbbc1b892b7e5f6111e1e927314cbaf60c9178075fca6edf63708ef3453

See more details on using hashes here.

File details

Details for the file linefit-1.0.1-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for linefit-1.0.1-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 8235f96a85e85046a2291f56593ed98ebae791fc90898574fbafc2b2532e8553
MD5 a977f83abe9d4820934db394fe3fed6c
BLAKE2b-256 39e7f011a77a1bf81eaffee3f18f051e63529cd7a085b43c6daf86e559de9522

See more details on using hashes here.

File details

Details for the file linefit-1.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for linefit-1.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cec23a011f3045cbbb77683475e5e20d48f3d19f2d61df34fc90079127655f44
MD5 1d2cb03ee4b1a658b3b210a09fb2f62b
BLAKE2b-256 51dc0bf7cb23997a1e392972f2a66b5240da13edb7e39d512eb3998942fd32c7

See more details on using hashes here.

File details

Details for the file linefit-1.0.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for linefit-1.0.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 cff76305ee95458c70a28a2771d5c8a72764e8c0dfa54769224d78176bf70304
MD5 32de016fcc0b7e2c11827bba69bdc2d7
BLAKE2b-256 fefcb35d217250f51f06ccc811f634746a0fd156e7303683b0a4223367b7b2f6

See more details on using hashes here.

File details

Details for the file linefit-1.0.1-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for linefit-1.0.1-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 1858a716698eac6ba4017faf899468e7b0971995e73942d5c7c0c5a3dd841f93
MD5 78d5a9e747c4a9e25ff6f26242bd5cbb
BLAKE2b-256 c4ec87cc3093b238bf40d210d587d4fb07f47b2c3172599a8b166f17a3d46d76

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page